
WHIPPING YOUR XML DATA INTO SHAPE

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2004

0 09281 02689 1

0 9

$9.99US $9.99CAN

ColdFusionJournal.com

Conferences: Lots to Learn at CFUN Sean Corfield

2004 So many great sessions, it was difficult to choose 8

Site Work: Using XML to Share James Edmunds

Performing Arts Schedules A practical
application of the XML features in CFMX 12

CF101: Creating a Remember Me Jeffry Houser

Login Implementing a login script on your site 32

Foundations: Fusebox or Mach-II ? A look Hal Helms
at the strengths and weaknesses of both frameworks 36

Load Balancing: Web Server Frank S. DeRienzo

Load-Balancing Options Making
the transition to hardware-based 38

Vector Space: Building a Keyword Vector Matt Perdeaux

Space Engine in ColdFusion Adding an
extra dimension to your keyword searches 42

August 2004 Volume:6 Issue:8

By Matt Woodward page 20

Editorial
In with the New…
Simon Horwith page 5

CF Community
Tales from the List
Simon Horwith page 7

News
page 27

CFCS
Caching ColdFusion

Components in Shared
Memory

Jesse Skinner page 28

CFUGs
ColdFusion
User Groups

page 40

Web Services Edge

2005 East
February 15-17, 2005
Hynes Convention Center

Boston, MA
See page 35 for details

XSLTXSLT and
ColdFusion

and
ColdFusion

Copyright © 2004 Macromedia, Inc. and its licensors. All rights reserved. Macromedia, the Macromedia logo, and Dreamweaver are trademarks or registered trademarks of Macromedia, Inc. in the U.S. and other countries.
Other marks are the properties of their respective owners. Reference to any specific commercial products, processes, or services, or the use of any trade, firm, corporation name, or product depiction is for the information
and convenience of the public, and does not constitute endorsement, recommendation, or favoring by Apple; Gulfstream Aerospace Corporation, a General Dynamics Company; EDGE*MODERN; or S2D2, LLC.

Dreamweaver.The highest common denominator.

edgemodern.com
“Macromedia® Dreamweaver® MX 2004 has helped
us design and build a fully functional site which
helps us immediately respond to customer needs—
all without a Ph.D. in web development.”

Drew Sanocki, EDGE*MODERN, Co-founder.

gulfstream.com
“With Dreamweaver, we’ll be able to take
even greater advantage of CSS, which will
add huge efficiencies to how we develop
and maintain our website.”

Will Dent, Gulfstream Aerospace, Interactive Marketing.

Now updated and
 up to 70% faster.

See more at: macromedia.com/go/dwupdated

ColdFusionJournal.comCFDJ AUGUST 20044

ColdFusionJournal.com 5AUGUST 2004 CFDJ

editorial
editorial advisory board

Jeremy Allaire, founder emeritus, macromedia, inc.
Charlie Arehart, CTO, new atlanta communications
Michael Dinowitz, house of fusion, fusion authority

Steve Drucker, CEO, fig leaf software
Ben Forta, products, macromedia

Hal Helms, training, team macromedia
Kevin Lynch, chief software architect, macromedia
Karl Moss, principal software developer, macromedia

Michael Smith, president, teratech
Bruce Van Horn, president, netsite dynamics, LLC

editorial

editor-in-chief
Simon Horwith simon@sys-con.com

technical editor
Raymond Camden raymond@sys-con.com

executive editor
Jamie Matusow jamie@sys-con.com

editor
Nancy Valentine nancy@sys-con.com

associate editors
Gail Schultz gail@sys-con.com

Torrey Gaver torrey@sys-con.com
editorial assistant

Rachel Matusow rachel@sys-con.com
research editor

Bahadir Karuv, PhD bahadir@sys-con.com

production
production consultant

Jim Morgan jim@sys-con.com

lead designer
Abraham Addo abraham@sys-con.com

art director
Alex Botero alex@sys-con.com

associate art directors
Louis F. Cuffari louis@sys-con.com

Richard Silverberg richards@sys-con.com
Tami Beatty tami@sys-con.com

contributors to this issue
Sean Corfield, Frank S. DeRienzo, James Edmunds,

Hal Helms, Simon Horwith, Jeffry Houser, Matt Perdeaux,
Jesse Skinner, Matt Woodward

editorial offices
SYS-CON MEDIA

135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9638

COLDFUSION DEVELOPER’S JOURNAL (ISSN #1523-9101)
is published monthly (12 times a year)

by SYS-CON Publications, Inc.
postmaster: send address changes to:

COLDFUSION DEVELOPER’S JOURNAL
SYS-CON MEDIA

135 Chestnut Ridge Rd., Montvale, NJ 07645

©copyright
Copyright © 2004 by SYS-CON Publications, Inc.
All rights reserved. No part of this publication may

be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy

or any information, storage and retrieval system,
without written permission.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

FOR LIST RENTAL INFORMATION:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

For promotional reprints, contact reprint
coordinator Kristin Kuhnle, kristin@sys-con.com.
SYS-CON Publications, Inc., reserves the right to
revise, republish and authorize its readers to use

the articles submitted for publication.
All brand and product names used on these pages

are trade names, service marks, or trademarks
of their respective companies.

W hen Robert Diamond asked
me to take over his duties
as editor-in-chief of

ColdFusion Developer’s Journal, my
initial reaction was shock. Not so
much because he’d asked me to do
the job, but because his editorial
would not be the first thing I’d see the
next time I open a copy of CFDJ. He’s
been the editor-in-chief for as long as
I can remember… and a damn good
one at that.

I asked Rob why he was handing over the
reins, and his response was that he wanted to
shift his focus towards other things at SYS-
CON and that he thought it’d be good to jump-
start the magazine and give it a kick in the
pants. I don’t want to think of it as “out with
the old…” but rather simply “… in with the
new.” Those of you who know me know that
I’m currently living in London so perhaps a
more appropriate title for this editorial would
be (in the words of Monty Python) “and now
for something completely different…”. That
said, I will do my best to meet your and Rob’s
expectations, and fill the void that he leaves
behind.

At the time of this writing, Macromedia has
released one new product (Flash Lite) and two
new versions of products (Contribute 3 and
Flash 7.2) all within the last three weeks. They
also have a new product launch and an updater
to an existing product slated for release in the
near future (due to NDA I can’t say anything
more than that). Blackstone, the next version of
ColdFusion, is supposedly going to be released
somewhere between the end of Q4 this year
and Q1 next year – one can only assume a JRun
version or updater will also be released.
Although no release date has been formally
announced, it’s also safe to assume that we’ll
most likely see the official release of FlashCast
in the very near future as well.

Who knows what other new products and
product versions might be released before the
year is through? I mention all of this because
I’m excited about the new products that
Macromedia has released and I’m even more
excited about the impending releases.

Blackstone, in particular, looks
very promising. With more and more
new products on the market, many
developers are finding it difficult to
keep up. Many of the new products
are not only powerful in their own
right, but can also be integrated with
ColdFusion to offer CF developers
something new and beneficial.

So what can ColdFusion develop-
ers do to keep up to date with the

latest Macromedia offerings? Helping develop-
ers to overcome this challenge is one of the
main services I believe this magazine can offer
and I believe CFDJ needs to remain sensitive to
this fact and reflect it in the articles it runs.
Over the past year or two there has been a sig-
nificant increase in the number of CFDJ arti-
cles that focus on Java/J2EE integration with
CFML applications. My hope is that we can
continue this trend to not only include Java
integration but integration of ColdFusion with
other Macromedia products as well; this, of
course, while maintaining the commitment
that CFDJ has always had to offering expert
advice on “pure” CFML development topics.

In addition to integration with other tech-
nologies/solutions, I have also been consider-
ing several other column and article ideas that
will present readers with information that’s
been scarce (or lacking) in the community.
This includes giving a voice to the User Groups
and possibly even to Macromedia itself in a
more official capacity. If and how this happens
remains to be seen, as do many other possible
content offering and format evolutions. The
best news of all though is that I’m open to any
and all suggestions. If you have article or col-
umn ideas for the magazine, please don’t hesi-
tate to send them my way
(simon@horwith.com).

About the Author
Simon Horwith is the new editor-in-chief of
ColdFusion Developer’s Journal.

simon@horwith.com

In with the New…

By Simon Horwith

ColdFusionJournal.com 7AUGUST 2004 CFDJ

This month I thought I’d talk
about a thread that began with a post
from Jean-Marc Bottin about looping
over lists in CFSCRIPT. Jean-Marc
wrote the list because after attending
the MacroChat on Advanced
ColdFusion Techniques that I gave
during Macromedia Community
Week, he decided to begin using
CFSCRIPT more. Unfortunately, Jean-
Marc couldn’t find any documenta-
tion for how to do a “<CFLOOP list=‘’>” within
a CFSCRIPT block. So, he turned to the List for
answers.

The obvious response that Jean-Marc
received, which any of you who are familiar
with CFSCRIPT would most likely also suggest,
is to do something like the following (first
posted by Stephen Moretti in response):

<CFSCRIPT>
for (i=1;i lte listlen(theList,thedelimiter);

i=i+1) {
thisItem = ListGetAt(theList,i,thedelim-

iter);
other stuff......

}
</CFSCRIPT>

The purpose of this article is not to discuss
CFSCRIPT syntax, but rather the ideas behind
three discussions that ensued from responses
to the thread. I’ve chosen to discuss these top-
ics because they do a good job of illustrating
that any task in CFML, no matter how trivial it
may seem, is worth thinking about.

The first response worth discussing was a
response he received that stated that you
should not loop in CFSCRIPT because it’s
much slower than looping with tags. This is
simply not true, as was pointed out by several
members of the List. However, it did bring
attention to several other points worth keeping

in mind. First is the fact that prior
to ColdFusion MX, most series of
operations executed in a CFSCRIPT
block would execute much faster
than their tag counterparts. This is
because only one call to the parser
was required to execute the com-
mands, as opposed to one call per
tag. As of ColdFusion MX, the per-
formance differences are, for the
most part, negligible. This is due to

the fact that CFML is now compiled to Java
bytecode.

That said, there are two other reasons to
use CFSCRIPT, which may or may not be com-
pelling for developers. The second reason to
use CFSCRIPT is that it suppresses whitespace.
This can mean a significantly quicker page
load time for some site visitors, and is also
much more friendly for people who wish to
view or parse the page source (including
screen reader applications). The third reason
to use CFSCRIPT is readability. CFSCRIPT code
tends to be easy to read – easier than tag syn-
tax for many people.

president & ceo

Fuat Kircaali fuat@sys-con.com

vp, business development
Grisha Davida grisha@sys-con.com

group publisher
Jeremy Geelan jeremy@sys-con.com

advertising

senior vp, sales & marketing
Carmen Gonzalez carmen@sys-con.com

vp, sales & marketing
Miles Silverman miles@sys-con.com

advertising director
Robyn Forma robyn@sys-con.com

advertising manager
Megan Mussa megan@sys-con.com

associate sales managers
Kristin Kuhnle kristin@sys-con.com

Beth Jones beth@sys-con.com
Dorothy Gil dorothy@sys-con.com

sys-con events

president, events
Grisha Davida grisha@sys-con.com

National Sales Manager
Jim Hanchrow jimh@sys-con.com

customer relations

circulation service coordinators
Edna Earle Russell edna@sys-con.com

Linda Lipton linda@sys-con.com

manager, jdj store
Brunilda Staropoli bruni@sys-con.com

sys-con.com

vp, information systems
Robert Diamond robert@sys-con.com

web designers
Stephen Kilmurray stephen@sys-con.com
Matthew Pollotta matthew@sys-con.com

online editor
Martin Wezdecki martin@sys-con.com

accounting

financial analyst
Joan LaRose joan@sys-con.com

accounts payable
Betty White betty@sys-con.com

accounts receivable
Shannon Rymsza shannon@sys-con.com

subscriptions
Subscribe@sys-con.com

1 888 303-5282
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department
Cover Price: $8.99/issue

Domestic: $89.99/yr (12 issues)
Canada/Mexico: $99.99/yr

all other countries $129.99/yr
(U.S. Banks or Money Orders)

Back issues: $12 U.S. $15 all others

cf community

About the Author
Simon Horwith is co-technical editor of CFDJ,
and chief technology officer of eTRILOGY Ltd., a
software development company based in
London, England. Simon has been using
ColdFusion since version 1.5 and is a member of
Team Macromedia. He is a Macromedia
Certified Advanced ColdFusion and Flash
developer and is a Macromedia Certified Master
Instructor. In addition to administering the
CFDJ List mail list and presenting at CFUGs
and conferences around the world, he has also
been a contributing author of several books and
technical papers.
simon@horwith.com

By Simon Horwith

F
or whatever reason, there has been a recent increase in posts on the CFDJ List, dealing

with looping in CFML. Throughout the month CFDJ members wrote inquiring about

how to loop over variable scopes and other structures, lists, Excel spreadsheet data,

XML data, and more!

— continued on page 19

Tales from the List
Everyone’s gone loopy!

ColdFusionJournal.comCFDJ AUGUST 20048

C
FUN is the national ColdFusion and Web

programming conference that Rockville,

Maryland–based IT firm TeraTech

(www.teratech.com) hosts each June in the DC area.

CFUN (www.cfconf.org/cfun-04/) stands for

ColdFusion User Network, and based on my trip to

CFUN-04 there were plenty of people learning, networking, and

having fun doing it!

CFUN Day Zero and Some Helium
While the conference proper didn’t start until June 26, I flew

in a day early to catch up with some of the other speakers at the
MMUG manager meeting day and the speaker dinner. I spent a
lot of the day talking to Matt Liotta about He3 – his company’s
new ColdFusion editor, based on Eclipse, that debuted in beta
form at CFUN. The CFUN “party pack” contained the He3 beta
on CD along with many other goodies. So what does He3 offer? A
color-coding ColdFusion editor with tag completion – a little
rough round the edges but with great things promised – and
built-in Regex and XPath panels that let you build and test your

regular expressions and XML queries in “real time”
using arbitrary snippets of text and XML (highlighting
matches as you type). He3 also recognizes Mach II
applications and provides an intelligent XML editor
for the mach-ii.xml configuration file, showing both a
source view and a tabular view of each of the sections
of the file, with the ability to add and delete entries
using the table view – very useful for building out the
skeleton of the application. I haven’t tested it yet but I
understand He3 also supports Fusebox 4 and has a
similarly intelligent editor for FB4 XML files.

Based on Eclipse, He3 has a variety of cool editing tricks up
its sleeve, including auto-updates from RichPalette’s Web site (so
you’ll get new features as they’re made available), “quick diff”
against all previously saved versions of a file (very useful to keep
track of what you’ve been doing to a file!), integration with CVS,
and so on.

Other than He3, I caught the tail end of the Macromedia User
Group Managers’ sessions with Ed Sullivan talking about the his-
tory and future of MMUGs, which was interesting. That was fol-
lowed by the speakers’ dinner at a Brazilian BBQ restaurant
(where I spent more time chatting with Matt) and then the oblig-
atory evening in the bar discussing everything CF-related. This
tailed off into sessions in various rooms, with more beer, talking
about Mach II, and then a late-night bitch-fest about the good,
the bad, and the ugly in ColdFusion and the developer commu-
nity.

conferences

By Sean Corfield

Lots to
Learn at

CFUN
2004So many great sessions, it

was difficult to choose

ColdFusionJournal.com 9AUGUST 2004 CFDJ

Change of Plans
I was planning to start the day with

more Matt Liotta (his “Utilizing Web
Services” session), followed by Ray
Camden’s “CFC Best Practices, Tips, and
Tricks,” then, after lunch, Hal Helms’ BOF
on methodologies, Michael Smith (stand-
ing in for Shlomy Gantz) on “Managing
CF Projects,” Simon Horwith on evolving
from a scripter to an architect, April
Fleming’s “XSLT for Data Manipulation,”
and finally, the CFDJ panel that included
Macromedia’s Tim Buntel. At least that
was my plan... .

The Keynote – Stephen
Shapiro of 24/7
This was kind of fun but not CF-specific.
A creativity guru, Stephen Shapiro talked
about some techniques for generating
new solutions to problems and how to
think outside the box. I’d like to have
heard more about his forthcoming book,
Goal-Free Living – Passion-Filled Life, but
I guess that will have to wait for another
time.

By the time I got to Matt Liotta’s talk
on Web services, it was completely full so
I hung out and chatted with folks in the
hallway. Next up was Ray Camden’s ses-
sion about best practices for using CFCs.
He had a lot of technical problems with
the projector, which unfortunately cut
short his talk somewhat, but he went
through some good basic tips for folks
coming to CFCs. Personally I had hoped
for a bit more technical depth but I think
it was appropriate for the audience over-
all. And Ray more than maintained his
sense of humor through the traumas of
the projector problems!

BOF Lunch and XSLT
Lunchtime meant a Birds Of a Feather

session with Hal Helms, Ben Edwards,
Jeffrey Houser, Joseph Flannigan – and me
(co-opted by Hal). We talked about the

good and the bad in frameworks and
methodologies. It was an interesting and
lively discussion but hard to summarize
any particular sentiment from the group
as a whole. After lunch, Michael Smith ran
Shlomy’s session on managing CF proj-
ects. The Standish Group was quoted as
saying that the key factors in successful
projects are: user involvement, executive
management support, and a clear state-
ment of requirements. These three factors
accounted for 50% of the influences!

The final session of the day was April
Fleming on using XSLT for data transfor-
mation. I’ve never used XSLT so it was a
good introduction for me. She showed
code using an MS-specific XML parser (a
COM object), which made the examples
look more complex than they needed to
be – she’d done that so the code would
run on CF5 as well as CFMX (but wouldn’t
run on non-Windows platforms!). Her pri-
mary example was cool though, taking a
single XML packet and transforming it
into both HTML for display and SQL to
create and populate database tables. This
certainly showed the power of XSLT!

CFDJ Panel and CF Chat
Then it was time for the CFDJ Panel

(chaired by Jeff Peters since Robert
Diamond was delayed). Charlie Arehart
(New Atlanta), Tim Buntel
(Macromedia), Michael Smith
(TeraTech), Simon Horwith, and Hal
Helms took questions from the floor.
Tim said that Macromedia is looking to
raise the profile of CFCs, and drive more
folks to use them, by making them more
accessible to beginners (e.g., through
Dreamweaver behaviors that produce
clean code with logic in CFCs, separated
from presentation code). I would have
liked to see the panel go on much longer
but all good things come to an end. Stan
Cox made a traditional appearance,
muttering about problems with his
<blink> tag but was, mercifully, removed

by security before he could disrupt the
panel too much!

After the panel, Michael ran a
ColdFusion version of Who Wants to Be a
Millionaire but I retired to my room with
Chris Philips to look at a problem he was
having with SES URLs. Then it was time
for the networking social event in the
hotel’s nightclub. A brief visit to Hal’s and
Ben’s suite (where a poker tournament
seemed to be in full swing) was followed
by a fairly brief visit to the bar, followed by
a not-so-brief visit to Steve Nelson’s and

Rey Muradaz’s rooms to be entertained by
Bogdan Ripa’s beer bottle–opening talents
(how to be creative in the absence of a
proper bottle opener). Bogdan and his
Interaktcrew were visiting from Romania
to promote their sophisticated suite of
Dreamweaver MX extensions!

Reaching Mach II
On day 2, I had planned to attend two

accessibility talks first thing, but lack of
sleep got the better of me and I had to
skip them, catching another two hours of
much needed rest so that I could function
during the rest of the day. Apologies to
John Hamman and Larry Hull for missing
their talks. Before my talk, I met with
Daniel Dougherty, who’d been picked to
interview me for five minutes, and he had
some great questions. I believe TeraTech
will post the various attendee/speaker
interviews at some point so I’ll keep y’all
in suspense!

Then it was time for my Mach II talk.
This is the ColdFusion OO methodology,
not twice the speed of sound! A good per-
centage of folks in the audience were on
CFMX 6.1 and were already using either
Fusebox or Mach II so that was quite a
change from some of my gigs. The presen-
tation seemed to go over well and there

“For every single
session slot, there
were actually two
sessions I wanted
to attend (some-
times three!)”

Ray Camden overcomes projector problems

Speaker Sean Corfield, David Epler,
and Sandra Clark

ColdFusionJournal.comCFDJ AUGUST 200410

were some good questions from the
floor – thanks to everyone who attended
(and special thanks to those folks who
gave me good evaluations – I got a bot-
tle of wine at the wrap-up session for
tying as “best speaker” with Charlie
Arehart from New Atlanta! I’m honored!)

Tools BOF and Blackstone
Secrets

Sunday lunchtime saw a new Birds
Of a Feather session added, for IDE and
tool support for frameworks, led by Matt

Liotta. He demo’d some of He3’s support
for Mach II (table-based editing of the
XML file). I showed a utility that renders
Mach II’s event handlers as hyperlinked
pages (so you can click on filter, listener,
view, and event names and jump to their
definitions; I haven’t made this public
yet!). Jeff Peters showed a couple of tools
relating to Fusebox (MindMapper and
FuseMinder) and then Steve Nelson
showed his test harness generation
tools. The aim was to raise awareness
and to get feedback about what sort of
tools people wanted. One thing that
wasn’t demo’d but seemed to generate
interest was Dave Ross’s tool for con-
verting XMI (the XML output from sev-
eral UML modeling tools) to CFCs.

Next up was Ben Forta’s keynote on
Blackstone! He raced through some of
the things he’s been showing at CFUG
presentations (Flash forms, PDF genera-
tion, report generation, sourceless
deployment and EAR/WAR file packag-
ing) and then gave a CFUN exclusive
sneak peak: the event gateway! This is
probably the most exciting and radical
addition ever to ColdFusion: by writing
a small amount of Java, it allows you to
connect pretty much anything to
ColdFusion and have external, asyn-

chronous events trigger method calls on
a CFC. The example Ben showed was an
agent that watched a folder for new,
changed, or deleted files and automati-
cally called the appropriate method on a
CFC to populate/update a database
based on the contents of the file. While
this generated a lot of “ooohs” from the
audience, I suspect that the real impact
of this feature will take awhile to sink in
– it opens up a whole new field of use
for ColdFusion since this lets it process
requests that are not Web-based.

The Final Lap
One of the great things about CFUN

for me was the wealth of really good ses-
sions. For every single session slot, there
were actually two sessions I wanted to
attend (sometimes three!). Of course,
the downside is that you just can’t get to
see everything. (Apparently CFUN-05
will repeat popular sessions). I’d already
had to make several hard choices and,
following the keynote, I had to make
another one. I decided to go hear Jeff
Peters talk about “Fusebox 4 in 40 or
Fewer” (instead of David Epler’s session
about HTML markup for accessibility,
which was my other choice). Sorry
David. Jeff went through the entire life
cycle process he uses, starting with wire-
framing and prototyping, followed by
fuse analysis and circuit architecture,

and finally code generation, all support-
ed by tools. Because Ben’s talk ran over
(understandable!), Jeff’s session was a
bit compressed but, although he clearly
felt the time pressure, he managed to
cover everything in a fairly comprehen-
sive manner. It was very interesting to
see someone else’s process, especially
one so different from mine.

The final session I went to was Sandra
Clark’s on “Accessible Web Forms.” She
started out by demo’ing a screen reader
trying to read a fairly typical Web form.
The result was incomprehensible! Then
she went through a long list of stuff you
can do to help make forms more accessi-
ble (using fieldset, legend, label, etc.) as
well as what not to do. (Don’t use
accesskey – it conflicts with screen read-
ers’ keyboard shortcuts and they don’t
provide a “reset” button on the form).
She got into a lot of depth and it made
me realize what a complex subject this
is, but I sure learned a lot from her!

There was a final general session with
prizes and thank-yous and then folks
began to drift off toward home. I spent
most of the evening in the bar with
Michael, Sandra, the guys from Interakt,
Nate Nelson, and many others, dis-
cussing everything CF-related (and
many things that weren’t). And then
goodbyes... until next time! All in all, it
was a terrific conference with some awe-
some material. I enjoyed myself
immensely, especially talking to so many
CFers! I also learned a bunch of stuff
(especially from April’s “XSLT for Data
Manipulation” talk and Sandra’s
“Accessible Web Forms” talk!). Sandra
got a well-deserved “second,” behind
Charlie and me – she really is a very
good speaker and loves her subject mat-
ter! See y’all at CFUN-05?

About the Author
Sean Corfield is director of architecture

at Macromedia and has worked in IT for
over 20 years. Sean is a staunch advocate
of software standards and best practices
and maintains the Macromedia
ColdFusion MX Coding Guidelines.
Recently Sean has become a staunch
advocate of Mach II. You can reach him
at www.corfield.org.

sean@corfield.org

conferences

Ben Forta talks with CFUN attendees

The crowd at CFUN’s Sunday keynote

Sean Corfield celebrates after the last
day of CFUN

Usingng XMLL e to Share
 Performing ArtsP f Schedules

ColdFusionJournal.comCFDJ AUGUST 200412

D
on’t you have it set up so you can just

automatically pull our listings from

our Web sites?” the e-mail asked.

“Not yet,” I typed in my response. “But it’s a great
idea, and I’m working on it now.”

My correspondent was the head of an organiza-
tion that is a member of a five-state performing arts
presenters association, a 50-member group whose
Web site I have managed for the past five years. The associa-
tion is made up of community and university organizations
that bring touring opera, dance, theater, and music to their
respective locales.

Sharing information about one another’s offerings has
always been an important component of the group’s activities,
not only to keep abreast of what’s going on in the region, but
also to be alert to possible cooperative routing of traveling
attractions.

As any of you who work with such groups
know, a consortium of nonprofits is likely to include
members with a diverse range of monetary
resources, staff, and technological sophistication.
So any technical solutions introduced to the group
are likely to be adapted in steps or stages, and must
be inviting even to organizations with small
resources.

There had been some attempts to create a
group calendar that included events from the vari-
ous member organizations, including – in the early

days – having a volunteer hand type from member brochures
into a spreadsheet. Even that low-tech approach was hit or
miss, as some organizations neglected to mail their brochures
to the poor soul doing the compiling!

About three years ago, when the last of the member organi-
zations finally added their own local Web sites, I instituted a
grouped search feature for the members, which used the free
search facility offered by Atomz (www.atomz.com) to crawl the
calendar listing pages of the various member organizations’

By James Edmunds

site work

A practical application of the XML features in CFMX

ColdFusionJournal.com 13AUGUST 2004 CFDJ

Web sites. This didn’t create a single set of compiled listings,
but it was at least beneficial to members wishing to see which
of their colleagues might be presenting an attraction in their
area of interest. I also have Atomz crawl an archive of the
group’s list serve e-mail so members can track mentions of
artists and attractions that are still prospective and for which
tours might still be building.

It was probably the Atomz search my correspondent meant
when he expressed a recollection that we were “automatically”
pulling listings from his Web site. But, as valuable as that ser-
vice is to us, it is not creating an aggregated calendar of event
listings.

The means to create an aggregated calendar are readily at
hand, though. If each organization could output commonly
formatted XML, these outputs could easily be combined into a
single group calendar. And, if a group like ours developed a
protocol for sharing this information, it could likely be useful
to others.

I proposed to my group that we undertake to create what
we’re calling performing arts event syndication (PAES). The
leaders of the group told me to set up a framework to do it.

As luck would have it, I also have as a client a consortium
of performing arts presenters in one of the states that is part
of the big group. This client has a couple of members large
enough to also be members of the multi-state group. The sin-
gle-state group already has a combined calendar of their
events, entered through a simple back end. I realized that if I
could generate XML from the single-state Web site for each of
its members, I could turn around and capture the XML of the
two members of the multistate group, for the multistate
group’s aggregate calendar. In other words, I could provide my
own early adopters!

RSS: Weblogs, News, and Why Not
Performing Arts Events?

As a blogger (http://poorclio.com), I was aware of the
growing use of RSS for Web log feeds as well as news feeds. I
reasoned that there would be an advantage to making the first
version of PAES conform to an RSS standard, so I chose RSS
2.0. In fact, the project was begun simply by using the RSS 2.0
protocol, relying at this stage on participants observing a cou-
ple of simple conventions in their RSS in order to comply with
the formatting of the aggregate calendar.

In fact, one of the benefits I planned to tout to all parties
involved was the value of having an RSS output that end users
might subscribe to in their own news readers. In the future,
our project may call upon us to create a more refined or spe-
cific protocol for PAES, in which case our members are likely
to simply output both; but for now, in these early stages, we
can demonstrate and build the project with RSS.

Because my background was in the newspaper business, I
also envision that a publisher creating a community arts or
events calendar might one day compile such listings by crawl-
ing the XML URLs of the organizations in the coverage area.
Once again, though such an application might evolve its own
specialized protocol, RSS seemed as good a starting point as
any to demonstrate the concept.

Additionally, there is a wealth of resources available online
to assist someone wishing to output RSS, in most cases specif-

ic to any of the various application servers. And, of course,
there are RSS validators easily accessible on the Web.

So I was ready for the first step. Within my own client base I
had a single-state group that had a couple of the organizations
that would feed the multistate calendar. Why not create an
RSS feed for all of the organizations in the single-state group,
and then feed the two who were members of the multistate
group into the aggregate calendar? This would have the side
benefit of providing an RSS feed for all of the members of the
single-state group, most of which aren’t members of the multi-
state group – and which tend to be smaller organizations
unlikely to have the technological resources to be out front on
an issue like developing RSS feeds on their own. I could feed
my own project, and also do a good turn for the members of
my single-state group.

Step One: Creating Some XML That Will
Later Be Aggregated

The single-state group’s Web site features a calendar of
events displayed in a monthly grid calendar format, identify-
ing events by type, city, and date. A link under each event
leads to a detail page with information about the specific
event, as well as the presenting organization. The database is
MySQL, and the site is written in ColdFusion. The information
about the events is in one table, and, for the detail pages, is
joined to a table of information about the member organiza-
tions.

The table for the events is sufficient in this case to generate
the information needed for our RSS output. After finding some
good resources on the Web, I created a template (see Listing 1)
that loops over each organization, checks to see if it has any
upcoming events, and then loops through those events and
writes them to an XML file.

While these XML files are valid RSS, you will note a couple
of interesting things about the way dates are used. The date is
actually found twice, once as part of “description” and once in
the “pubDate”. Also, you will note that in this case “pubDate” –

Figure 1: A page with links to information about how to generate
RSS from various application servers, as well as other helpful

links and information, is provided for webmasters

unlike most RSS – is not the date the information was generat-
ed, but rather the date that the event will occur. This allows
the “items,” once passed into the collective database, to be
sorted on the “pubDate” date. Also, if the XML is displayed in
aggregators (which sometimes do not show the pubDate),
readers will see the dates.

It is also worth noting that the event time is not necessarily
carried by the date/time object that becomes the pubDate. My
observation of the manner in which many of the member
organizations of the multistate group set up their own data-
bases led me to avoid relying on that date/time object to carry
the event time. Many organizations use only the date portion
for parsing event order and use a text field for the time, possi-
bly to allow for non-time designations such as “immediately
after the performance” or even “TBD.” In any case, practical
experience indicated that I might have better success if I
planned to rely on the event date and time to be passed
through as text in the description field.

Eating What I Cooked…
Now that I had a couple of RSS feeds of calendar informa-

tion tailor-made to my needs, it was time to capture them and
aggregate them into a single calendar on the multistate orga-
nization’s Web site. The template I wrote for doing that was
made easy by ColdFusion MX’s XMLParse() function (see
Listing 2).

The first thing I do is remove all earlier entries into my
aggregated listings, which are in a table called XMLEvents.
Then I poll the table that has information about the members
of the organization, and select those that have an XML output
(and also have paid their dues!). Using CFHTTP, I loop through
each of them and collect the wanted XML from the designated
URLs, and distribute the parsed XML into a CFQUERY insert
that populates the events into the XMLEvents table. If there
are errors, I generate mail, and also show error messages on

screen for any time that I call the template from the browser.
The template is scheduled to run every day, and the result

is a set of similarly formatted event listings that can be sorted
on date and displayed in any variety of chronological render-
ings.

… and Getting Someone Else in the Kitchen
Now that I had demonstrated that I could complete the cir-

cle on my own, it was time to start to make it work with the
participation of the member organizations of the multistate
group. Since I knew that roughly half the members had Web
sites employing application servers, and that several different
application servers were represented, I created a “helper” page
for webmasters with links to sources of information about cre-
ating RSS with ColdFusion, ASP, JSP, PHP, etc. (see Figure 1). I
also provided a link to an RSS feed validator, and a feed test
that lets a webmaster see how his output compares to a model
output.

I sent an e-mail to the multistate group’s list serve, which
goes to the executive directors, asking them to have their web-
masters take a look at the project and contact me with any
questions they might have. The first response came from a
member organization whose Web site employs ASP; it took the
webmaster there about 45 minutes to create the template for
outputting the XML, and it’s been humming along since (see
Figure 2).

A few weeks ago, at the most recent meeting of the multi-
state group, it was my pleasure to award a prize (a macadamia
nut pie from Hawaii, no less!) to the executive director of that
early-adopting member organization. Now, I’m looking for-
ward to having others join in.

The Reality of Small Nonprofits
In my next appeal to members of the multistate group, I’ll

point out how relatively painless it was for the pie winners to
incorporate the XML output into the function of their Web
site. The technology side of creating this kind of project is
often far less challenging than the organizational behavior,
even in a group like the one I am working with, which is rela-
tively progressive in its outlook. (When I first started working
with the multistate group, one of the initial emphases was on
getting members to use a list serve rather than calling around
or sending one another batches of faxes; one of the officers
told me proudly, “Honey, I check my e-mail once a month,
whether it needs it or not.”)

The reality is that the kinds of nonprofit organizations that
present performing arts are often lacking in staff and
resources, and in many cases are removed from the source of
their technological services. In cases like this, I sometimes
have greener-on-the-other-side fantasies about being a corpo-
rate IT mogul, who I am tempted to imagine simply decides
on what shall happen in his empire, and thereby his will is
done. Come to think of it, maybe corporate IT guys have that
same fantasy!

In any case, the most-likely scenario for my multistate
group is that a few more early adopters will join in with their
XML at my personal urging, until there is enough traction and
momentum that those who aren’t in the calendar feel like they

ColdFusionJournal.comCFDJ AUGUST 200414

site work

Figure 2: The finished calendar output displaying aggregated
events in chronological order. As participation increases, calendar

display will be altered to monthly grid format with detailed
navigation and a search feature

ColdFusionJournal.com 15AUGUST 2004 CFDJ

ColdFusionJournal.comCFDJ AUGUST 200416

site work

are missing an opportunity, and want to join in – even to the
point of switching to an application server approach if they’re
not using it already, in order to be able to participate.

Where From Here?
The benefits of publishing and sharing calendar information

through XML are so great that it seems inevitable that arts organi-
zations will all want to do this at some point. The more places an
event is listed, the more people will see it, and the more tickets
will be sold. Aggregation of events has the additional advantage
of placing your events next to other similar events. Search engine
visitors and others who find a calendar while on the hunt for say,
a dance performance in one city, are good prospects to buy tick-
ets to a dance performance in a second city, even a couple of
hundred miles away. Performing arts calendar aggregation
groups information by affinity as much as by location.

Additionally, middle users or republishers (perhaps in
print, in the electronic media, or on the Web) could be served
by having a reliable source of commonly formatted events list-
ings, which could be aggregated and/or transformed through
XSLT, etc., as needed or useful.

If a new protocol is developed for these events, either as a
stand-alone PAES or as an extension of RSS, it might be able to

serve newspapers, chambers of commerce, or other organiza-
tions whose mission includes creating aggregate calendars.
These calendars may include not only arts events, of course,
but other community functions as well. In fact, maybe instead
of standing for Performing Arts Event Syndication, one day
PAES might be understood to mean Publicly Attended Event
Syndication. What greater honor can a technology acronym
garner than to have more than one antecedent?

About the Author
James Edmunds is a freelance Internet developer and arts
administration consultant living in New Iberia, Louisiana. After
a career in journalism that included writing for national publi-
cations such as Newsweek and serving as editor for an alterna-
tive weekly newspaper he founded in southern Louisiana, James
began to pursue a second career working with arts groups.
Though he had no technology background, his interest in har-
nessing the power of the Internet to serve the interests of the arts
led him into Internet development, an arena in which he has
now gone beyond the arts to serve a general business clientele.

jamesedmunds@jamesedmunds.com

Listing 1:

<CFQUERY name="getOrgs" datasource="#variables.thedsn#" username=
"#variables.thedsnusername#" password="#variables.thedsnpassword#">

SELECT distinct
organization
FROM Events
</CFQUERY>
<CFOUTPUT>
<CFSET NumberOfOrgs = getOrgs.RecordCount>
</CFOUTPUT>

<cfloop from="1" to = "#numberOfOrgs#" index="odx">

<CFSET TheLPNORG = getOrgs.organization[odx]>
<CFTRY>
<cfquery name="getCount" datasource="#variables.thedsn#"

username="#variables.thedsnusername#" password="#variables.
thedsnpassword#">

SELECT *
FROM Events
WHERE eventdate >= #CreateODBCDATE(Now())#
AND organization = '#TheLPNORG#'
</cfquery>
<CFSET numberofFeedItems = getCount.RecordCount>
<CFIF #variables.numberofFeedItems# gt 10>

<cfset NumberOfFeedItems = 10>
</CFIF>

<CFIF #variables.NumberOfFeedItems# gt 0>
<cfquery name="getContent" datasource="#variables.thedsn#"

username="#variables.thedsnusername#" password="#variables.
thedsnpassword#">

SELECT *
FROM Events
WHERE eventdate >= #CreateODBCDATE(Now())#
AND organization = '#TheLPNORG#'
ORDER BY eventdate
LIMIT #numberOfFeedItems#
</cfquery>
<cfset theDatetime = "#dateformat(now(),

"ddd, dd mmm yyyy")# #timeformat(now(),
"HH:mm:ss")# MST">

<cfsetting enablecfoutputonly="yes">
<cfsavecontent variable="theXML">

<cfoutput><?xml version="1.0" encoding="ISO-8859-1" ?>
<!-- RSS generated by LPN on #theDatetime# -->
<rss version="2.0">
<channel>
<title>#TheLPNOrg# Events</title>
<link>http://www.lapresenters.org</link>
<description>Output of event calendar of the Louisiana

Presenters Network</description>
<language>en-us</language>
<copyright>Copyright Louisiana Presenters Network</copyright>
<docs>http://www.lapresenters.org/rss</docs>
<lastBuildDate>#theDatetime#</lastBuildDate>

</cfoutput>

<cfloop from="1" to = "#numberOfFeedItems#" index="ctr">
<cfscript>
title = replace(getContent.title[ctr],

"&", "&", "ALL");
EventType = replace(getContent.EventType[ctr],

"<", "<", "ALL");
EventCity = replace(getContent.EventCity[ctr],

"<", "<", "ALL");
title = REReplaceNoCase(title,"<[^>]*>-/","","ALL");
date = dateformat(getContent.eventdate[ctr],
"ddd, dd mmm yyyy");
time = timeformat(getContent.eventdate[ctr],
"HH:mm:ss") & " CDT";
pubDate = date & " " & time;
showdate = dateformat(getContent.eventdate[ctr],
"ddd, mmm d, yyyy");

ColdFusionJournal.comCFDJ AUGUST 200418

showtime = getcontent.eventtime[ctr];
</cfscript>
<cfoutput>

<item>
<title>#XMLFORMAT(title)#</title>
<description>#showdate# #XMLFormat(EventCity)#, LA #showtime#

#XMLFormat(EventType)#</description>

<link>http://www.lapresenters.org/oneevent.cfm?event_id=#getContent.
event_id[ctr]#</link>
<author>webmaster@lapresenters.org</author>
<pubDate>#pubDate#</pubDate>
</item>
</cfoutput>

</cfloop>
<cfoutput>
</channel>
</rss>
</cfoutput>
</cfsavecontent>
<cfscript>
theLPNOrg = replace(#variables.thelpnorg#,
" ", "", "ALL");
theLPNOrg = replace(#variables.thelpnorg#,
".", "", "ALL");
</CFSCRIPT>
<cffile action="write" nameconflict="overwrite"
file="c:\inetpub\lapresenters\rss\#THELPNORG#.xml" output="#theXml#">
</CFIF>
<CFCATCH>
<CFOUTPUT>
XML failure for #THELPNORG#

</CFOUTPUT>
</CFCATCH>
</CFTRY>

</cfloop>

Listing 2:

<CFTRY>
<CFQUERY datasource="#variables.thedsn#" username="#variables.

thedsnusername#" password="#variables.thedsnpassword#">
DELETE FROM XMLEvents
WHERE XMLEVENT_ID > 0
</CFQUERY>

<CFQUERY name="getTheXMLs" datasource="#variables.thedsn#"
username="#variables.thedsnusername#" password="#variables.
thedsnpassword#">

SELECT member_id,organization,thexml
FROM members
WHERE thexml <> '' AND renewaldue > #variables.renewalthreshhold#
</CFQUERY>

<CFSET HowManyXMLs = getTheXMLs.RecordCount>

<cfloop from="1" to="#variables.HowManyXMLs#" index="xx">
<CFOUTPUT query="getTheXMLs" startrow="#xx#" maxrows="1">

<CFTRY>
<cfhttp url="#thexml#" method="get">
<cfset myDoc=XMLParse(CFHTTP.FileContent)>
<cfset Items=myDoc.rss.channel.XMLChildren>
<cfset myItemsArrayLength=ArrayLen(Items)-8>

<cfloop from="1" to="#myItemsArrayLength#" index="idx">
<CFSET theTitle = #myDoc.rss.channel.item[idx].Title.XMLText#>
<CFSET theDescription =

#myDoc.rss.channel.item[idx].Description.XMLText#>
<CFSET theLink = #myDoc.rss.channel.item[idx].Link.XMLText#>

<CFSET thepubDate = #ParseDateTime(myDoc.rss.channel.item[idx].
pubDate.XMLText)#>

<CFSET theOrganization = #organization#>
<CFQUERY name="addItems" datasource="#variables.thedsn#"

username="#variables.thedsnusername#" password="#variables.
thedsnpassword#">

INSERT INTO XMLEvents (Title,Description,Link,pubDate,organization)
VALUES

('#TheTitle#','#TheDescription#','#TheLink#',#ThePubDate#,'#
TheOrganization#')

</CFQUERY>
</cfloop>
#xx# #thexml#

<CFCATCH>
<CFMAIL to="#variables.erroremail#"
from="#variables.erroremail#"
subject="XMLCAL within loop"
server="#variables.themailserver#"
type="HTML">

URL was: #thexml#

Loop number #xx#

Didn't load. A #cfcatch.type# exception occurred.
#cfcatch.message# #cfcatch.Detail#

<CFDUMP var="#cfcatch.tagcontext#">

</CFMAIL>
Failure for URL: #thexml#

Loop number: #xx#

</CFCATCH>
</CFTRY>

</CFOUTPUT>
</cfloop>

<CFCATCH type="any">
<CFMAIL to="#variables.erroremail#"
from="#variables.erroremail#"
subject="CombineXML"
server="#variables.themailserver#"
type="HTML">
Didn't load. A #cfcatch.type# exception occurred.
#cfcatch.message# #cfcatch.Detail#

This message occurs if any of the XML parse loops fails.

<CFDUMP var="#cfcatch.tagcontext#">

</CFMAIL>
Some sort of failure. Possibly a bad XML URL or site down when polled
for XML.
</CFCATCH>

</CFTRY> Download the Code...
Go to www.coldfusionjournal.com

site work

ColdFusionJournal.com 19AUGUST 2004 CFDJ

FREE*CD!
$198.00
VALUE!() — The Complete Works —

CD is edited by JDJ Editor-in-Chief Alan Williamson and
organized into 33 chapters containing more than

1500 exclusive JDJ articles!

All in an easy-to-navigate HTML format! BONUS: Full source
code included!

ORDER AT WWW.SYSCON.COM/FREECD
*PLUS $9.95 SHIPPING AND PROCESSING (U.S. ONLY)

Secrets of the Java Masters
Every JDJArticle on One CD!

Only from the World’s Leading i-Technology Publisher

Obviously, there are other reasons you
may want to use CFSCRIPT, such as already
being familiar with ECMA Script syntax.

The second response that sparked dis-
cussion regarded the evaluation of the list
length in the “for” clause. One of the things
I mentioned in a post was that the second
condition in the “for” statement is evaluat-
ed on every pass. To illustrate this, run the
following code, which loops from 1 to the
length of a list and deletes the last entry in
the list on each pass:

<cfscript>
foo =
"a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y
,z";

for (i = 1; i lte listLen(variables.foo); i =
i + 1){

writeOutput("Loop " & variables.i & "
of " & listLen(variables.foo) & "
");

foo = listDeleteAt(variables.foo,
listLen(variables.foo), ",");

}
</cfscript>

Because the listLen() is evaluated on
every pass, the output would look like the
following:

Loop 1 of 26
Loop 2 of 25
Loop 3 of 24
Loop 4 of 23
Loop 5 of 22
Loop 6 of 21
Loop 7 of 20
Loop 8 of 19
Loop 9 of 18

Loop 10 of 17
Loop 11 of 16
Loop 12 of 15
Loop 13 of 14

While this is not a massive amount of
overhead, it is also unnecessary and could
easily be avoided. If the length of the list
was guaranteed not to change within the
loop, a variable could be set to the length
of the list prior to looping and the "for"
condition would loop as long as "i" is less
than or equal to that variable. It would
look like so:

foo =
"a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y
,z";

bar = listLen(variables.foo);
for (i = 1; i lte variables.bar; i = i +

1){…}

The third response to the thread that I
wanted to discuss was an oversimplified
statement I made that, “In general, you
shouldn't loop... PERIOD.” Making such a
simple yet bold statement raised a few eye-
brows (notably Ray Camden’s). It may
sound odd, and there is an immediate urge
to say “but what about…”, but it’s still a
perfectly valid statement. Of course, the

statement should be qualified with “Not if
you don’t have to” (which the post did state
as well).

Obviously, there is a time and a place to
loop. Every programming construct, every
tag and function in CFML, is the correct
tool to use in some scenario. Obviously
some are used more than others, and loop-
ing is one of those things. The fact remains
that you should always stop and ask your-
self whether or not it’s absolutely necessary
to loop in your code. There are even several
functions that help you avoid looping
(Query functions such as valueList() and
quotedValueList(); Array functions such as
arrayAvg() and arrayToList(); and Structure
functions such as structKeyList() and
structCount(), etc.). If looping is unavoid-
able (and there are often times when noth-
ing’s wrong with that) then pay close atten-
tion to the code inside the loop. After all,
this is code that will be executed repeatedly
per user request so make it as efficient as
possible.

In addition to these valuable lessons
about looping, I’d like to reiterate a state-
ment I made at the beginning of the article.
Any task in CFML, no matter how trivial it
may seem, is worth thinking about. This
isn’t really specific to CFML and it might
sound like common sense, but I am always
surprised how few people pay little atten-
tion to small details in their code. Every
line of code is worth evaluating not only
syntactically but for causality as well. Too
many developers take “simple tasks” and
“best practices” for granted. To these peo-
ple I say, “Open your eyes and question
everything.”

— continued from page 7Tales from the List

“You should always stop and
ask yourself whether or not
it’s absolutely necessary to

loop in your code”

ColdFusionJournal.comCFDJ AUGUST 200420

C
oldFusion MX offers a simple and easy way

to unleash the power of XSLT for manipu-

lating your XML data. Here’s how.

From Web services to news and blog data feeds to
configuration files, XML is everywhere these days. Far
from the buzzword it was when the W3C approved the
standard in 1998, XML is now the primary means of
data exchange for many organizations and has become
the lingua franca of text data in Web application development.
Although most of us are aware of how important and ubiquitous
XML has become, effective methods for using and manipulating
XML data may still be a mystery.

The notion of dealing with text data may conjure up night-
marish visions of parsing comma-delimited text files, but, thank-
fully the days of hunting for line breaks and counting characters
are long gone. The hierarchical nature of XML data makes it easy
to read for both humans and computers. What XML lacks is the
means to manipulate and search itself. Enter XSLT, which pro-
vides a powerful way to search (using XPath statements) and to
transform XML data from one form into another and – true to
form – ColdFusion MX makes using XSLT extremely simple and
accessible.

In this article I’ll describe how XSLT can be used to
transform raw XML data into HTML. We’ll start with a
basic example that uses simple XSLT pattern match-
ing to display XML data as HTML. Then, we’ll move
on to a slightly more advanced example that includes
conditional logic and sorting to make our XML data
even more useful.

XML: Why Use It?
If you haven’t worked with XML data yet, you may

be wondering why anyone would use XML, as
opposed to a database, for storing and retrieving data. One rea-
son might be for data exchange. Because XML is platform-neu-
tral and highly structured, it’s a great way to exchange data
between applications, especially when accessing a database
directly isn’t an option. Web services are a great example of this.
With the proliferation of Web services you may find one that’s
perfect for your needs, but because Web services return XML
data, you’ll need to transform it for use in your applications.

You may also find that even when you don’t need to share
data, the use of XML may simplify data storage and retrieval. I
recently developed an application for a large paint supply com-
pany. Each of their product types had widely differing attributes.
Based on the data itself, and how it would be used, it made sense
to store the product details as XML rather than as separate fields

By Matt Woodward

Whipping your XML data into shape

and

ColdFusion

XSLT

XSLT and

ColdFusion

ColdFusionJournal.com 21AUGUST 2004 CFDJ

in the database. I kept the high-level attributes (name, catalog
number, etc.) as database fields but decided XML was the perfect
way to store the more unwieldy product details. Once this XML
data was created and stored, however, I needed a way to manip-
ulate and present it to different types of users.

XML, Meet XSLT
You probably noticed a recurring theme in the previous two

paragraphs. More often than not, XML data will have to be
manipulated to suit your purposes, and, if you want to display
XML data to your users, chances are they won’t appreciate a sim-
ple dump to their browsers. Because XML is just text, you could
parse the data the old-fashioned way, but with XSLT we can
manipulate and transform XML data in far more powerful ways.

XSLT stands for “Extensible Stylesheet Language
Transformations,” and, as you may have already surmised,
XSLT’s job is to transform XML data from one form into another.
This might mean taking one XML format and converting it to
another (the purpose XSLT was originally designed to fulfill), but
XSLT is powerful and flexible enough to transform XML into
practically any format you may need.

Now you know XSLT’s purpose and potential, but you may
still be wondering exactly what it is. At its most fundamental
level, XSLT is a “flavor”of XML, meaning that XSLT stylesheets are
written in XML and must meet all of the requirements of the
XML standard. XSLT is also a language, so it has many familiar
programming language constructs, such as conditional state-
ments and loops.

XSLT’s core purpose is to modify XML docu-
ments based on patterns (defined using XPath
syntax) matched in the XML data. XSLT
stylesheets are typically nothing more than a set
of rules that tell the XSL processor to match a
pattern in an XML document and transform the
data within the matching section using the
instructions in the XSLT stylesheet. In a sense,
XSLT does for XML what regular expressions do
for plain text, only much more powerfully and
elegantly.

Don’t be concerned if this seems complicated;
the interaction between XML and XSLT will
become quite clear through a few simple exam-
ples. The beauty of working with XML and XSLT
in ColdFusion MX is that all of the complexity of
XML and XSL processors is handled by the
ColdFusion server. In fact, aside from writing
XSLT stylesheets, we need to concern ourselves
only with a single ColdFusion function to
unleash the power of XSLT. (For the remainder of
the article I’m assuming you have some familiar-
ity with XML concepts; if you need a refresher,
please see www.macromedia.
com/devnet/topics/xml.html or one of the
resources listed at the end of this article.)

A Simple Transformation
For our first foray into the world of XSLT, let’s

consider a very simple example. Imagine that

you’re the Web developer for your local zoo. Although your work-
place may seem like a zoo on occasion, I’m using the word “zoo”
literally in this case, so we’ll be dealing with animals. (No, I’m not
referring to anyone you work with!) Your task is to display an
HTML list of animals at the zoo, but the zoo’s database adminis-
trator guards her database the way a mother tiger guards her
young, so the only way she’ll provide you with data is as XML.
Listing 1 shows the XML data you receive from your DBA.
Although you could take the advice of Lazy (the zoo’s resident
sloth) and send the XML data directly to the user’s browser, the
end result isn’t particularly pretty (see Figure 1).

Lazy has gotten you into trouble before, so you’re going to
ignore him this time and use XSLT to transform the XML data
into HTML. This is a very common use of XSLT. Most modern
browsers support this type of transformation directly within the
browser, but because older browsers don’t support XSLT and the
syntax and available functionality may vary from browser to
browser, we’re going to use ColdFusion’s built-in XSLT processor.

Adding Style to Substance
One of XSLT’s main strengths is pattern matching, so our first

task is to create a match pattern in our XSLT stylesheet and give
it instructions to execute when it finds the matching XML data.
In order to keep this example simple and focus on the basic tem-
plate matching capabilities of XSLT, we’ll present the data in the
order in which we receive it. (We’ll investigate some other possi-
bilities later.) Listing 2 shows an XSLT stylesheet that transforms
the XML data into a simple HTML table.

Figure 1: Browser display of raw XML data

ColdFusionJournal.comCFDJ AUGUST 200422

XSLT

If you haven’t worked with XSLT before, this may seem a bit
foreign, so let’s walk through it. At the top of the document is
an <xsl:stylesheet> element that contains a couple of attrib-
utes. For our purposes you don’t need to know anything about
this element except that it has to be present in exactly this for-
mat in order for some XSLT processors (including the Apache
Xalan processor that’s built into ColdFusion) to work correctly.

Following the first line is an <xsl:output> element that tells
the XSL processor what to expect within the document. The
W3C’s XSLT specification defines xml, html, and text as valid
output methods, so in our case we use html.

Next, we get to the heart of XSLT: template matching. The
<xsl:template match="/animals"> instruction tells the XSLT
processor to start at the top of our XML document and find
the <animals> element. Conceptually, the use of "/" in XSLT is
similar to referencing a Web server’s document root by using
"/", so this tells the XLST processor to start at the top (the
“root” node) of the document. The code following the
<xsl:template> tag is a series of output directives that are
processed once a match is found, so this is where we place the
HTML code that will begin to build our page.

Match patterns in XSLT are defined using XPath. According
to the W3C, XPath is “a language for addressing parts of an
XML document.” Another language? Technically, yes, XPath is
a separate language. Luckily we don’t have to know much
about it to use it effectively, so I’m going to keep the dive into
XPath relatively shallow for the purposes of this article.

Retrieving the Details
Following the basic HTML code is another XSLT instruc-

tion, <xsl:for-each select="animal">. If you think this might be
a looping instruction, you’re right! (Reward yourself with a trip
to your local zoo, but please don’t feed the animals.) Because
our <xsl:template match="/animals"> instruction put us
immediately inside the <animals> element (this is also known
as a “node”), <xsl:for-each select="animal"> tells the XSLT
processor to find each <animal> element nested within the
<animals> node and output the HTML within the loop for
each animal. The lack of a "/" in this select is conceptually
similar to a relative file path; since we’re already inside <ani-
mals>, our match pattern is simply “animal.”

Note that there are numerous ways to achieve the same
result. One method is to use an <xsl:apply-templates> instruc-
tion that corresponds to a separate <xsl:template
match="something"> instruction within the same stylesheet.
Both because I wanted to introduce <xsl:for-each> and also

due to some changes we’re going to make to our stylesheet in
a moment, I opted for the loop here as opposed to another
template match.

Inside the <xsl:for-each> loop we see the last of our new
XSLT instructions, <xsl:value-of>, which tells the XSLT proces-
sor to retrieve particular pieces of data from the XML. Data in
XML can be stored in two basic ways: as an attribute or as an
element. Attributes are name/value pairs that are within an
XML tag, whereas elements are separate tag pairs. The value of
an element is the text between the element’s opening and
closing tags. This is admittedly simplified, but for the purposes
of this article further distinctions aren’t necessary.

To retrieve the value of an attribute (a name/value pair
that’s within an opening tag), simply prefix the name of the
attribute with an “@” symbol in the select portion of the
<xsl:value-of> instruction. To retrieve the value of an animal’s
“species” attribute for example, we use the following:

<xsl:value-of select="@species" />

Retrieving the value of elements is quite similar. Omit the
“@” symbol from the select instruction, use the name of the
element as the select value, and XSLT retrieves all of the text
between the element’s tag pair:

<xsl:value-of select="name" />

Before moving on, let’s reinforce our budding XSLT knowl-
edge by comparing the <xsl:for-each> loop and XSLT data
retrieval to something more familiar to ColdFusion program-
mers. If we had retrieved this data from a database using
cfquery, we would output our table rows like so:

<cfoutput query="animals">
<tr>

<td>#species#</td>
<td>#subspecies#</td>
<td>#name#</td>
<!--- etc. --->

</tr>
</cfoutput>

This is functionally equivalent to our XSLT <for-each>
statement:

<xsl:for-each select="animal">
<tr>

<td><xsl:value-of select="@species" /></td>
<td><xsl:value-of select="@subspecies" /></td>
<td><xsl:value-of select="name" /></td>
<!-- etc. -->

</tr>
</xsl:for-each>

Outputting the Results
Now for the easy part: using ColdFusion to apply our XSLT

stylesheet to our XML data and output the results. XSLT isn’t
terribly complex but it may be unfamiliar to many of you, so

Figure 2: Using XSLT and ColdFusion to transform the data
produces a somewhat more user-friendly output

ColdFusionJournal.comCFDJ AUGUST 200424

XSLT

thankfully ColdFusion does the rest of the work for us in three
easy steps (see Listing 3 for the entire file). First, we read the
XML data:

<cffile action="read" file="#ExpandPath('.')#/animals.xml"
variable="animalsXml" />

Next, we read the XSLT stylesheet:

<cffile action="read" file="#ExpandPath('.')#/animalsHtml.xsl"
variable="animalsXsl" />

Finally, we use the XmlTransform() function to transform
the XML data and output the results:

<cfoutput>#XmlTransform(animalsXml, animalsXsl)#</cfoutput>

Voila! You’ve just magically transformed XML data into
HTML, with a little help from ColdFusion (see Figure 2).

This example assumes the XML and XSLT documents are
retrieved using cffile, but this data can be retrieved other ways,
such as from a database or with cfhttp. As long as the first vari-
able passed to XmlTransform() is XML text or a ColdFusion
XML variable, and the second variable is XSLT, ColdFusion
handles the rest.

Felines and Reptiles Don’t Mix: Another
Transformation

So far, so good. We’re outputting XML data as HTML. But
the animals are getting restless. Felines and reptiles are co-
mingling in our output, and when it comes down to it, this
simple list isn’t particularly helpful. It’s more or less an XML
data dump in sheep’s clothing (a.k.a. HTML). Fortunately, we
can use XSLT to make this data more useful.

Let’s imagine that the zookeepers for the felines want a
feline-only listing and – as an additional unreasonable
demand on you – they want the felines listed in order of feed-
ing time so they can better manage their duties. With tradi-
tional text manipulation this would be quite a chore, but with
XSLT this task is rather trivial. You don’t even have to ask your
DBA for a different data feed.

Let’s extend our recently acquired XSLT pattern-matching
skills and instead of outputting all of the animals, we’ll output
only <animal> elements for which the species attribute is
"Feline". Then we’ll sort the felines by the <feedingTime> ele-

ment and we’ll have our feline keepers purring. We’ll also update
the HTML header information so our feline keepers know that
this is their list. Listing 4 shows the updated XSLT stylesheet.

Most of Listing 4 should look familiar. The first addition is
our sort tag, which is simple yet extremely powerful. <xsl:sort
select="feedingTime" /> tells the XSLT processor to perform
an ascending sort on the elements within the for-each loop,
based on the value of the <feedingTime> element. If you’ve
ever dealt with writing your own sorting functionality, you’ll
appreciate the power of this simple XSLT tag.

The other addition is <xsl:if>, which as you might guess is a
conditional instruction. <xsl:if test="@species='Feline'"> tells
the XSLT processor, “If the species attribute of this animal is
Feline, output the following.” If the test fails, the XSLT proces-
sor skips the output within the <xsl:if> tag for the current loop
iteration. XSLT doesn’t have a corresponding <xsl:else>
instruction, although <xsl:choose>, <xsl:when>, and <xsl:oth-
erwise> can be used to create a switch-like statement, offering
additional power for conditional processing.

To use ColdFusion to output our newly transformed data,
we simply follow the steps outlined above and replace the
original XSLT stylesheet with the new one (see Listing 5). Yes,
it’s really that simple! (See Figure 3.)

Conclusion
I hope this brief introduction to XSLT has at least piqued

your interest and taught you a little about this powerful part-
ner to XML. XSLT extends well beyond what I could cover here,
so I encourage you to investigate further. If you’re working
with XML data, XSLT can make your life far easier by opening
up possibilities for XML data transformation that would other-
wise be difficult or impossible to achieve. (See Figure 3.)

Resources
• Tidwell, D. (2001). XSLT: Mastering XML Transformations.

O’Reilly.
• Mangano, S. (2003). XSLT Cookbook. O’Reilly.
• Horwith, S. (2004). Working With XML in ColdFusion:

www.how2cf.com/files/papers/cfxml.pdf
• XSLT Tutorial: www.w3schools.com/xsl/default.asp
• W3C XSLT Recommendation: www.w3.org/TR/xslt
• “What is XSLT?”

http://xml.com/pub/a/2000/08/holman/index.html
• XSLT Recipe of the Day: www.xml.com/cookbooks/xsltck-

bk/solution.csp?day=1
• Macromedia DevNet XML Topic Center: www.macrome-

dia.com/devnet/topics/xml.html

About the Author
Matt Woodward is a Web application developer for i2
Technologies in Dallas, and also works as a consultant through
his company, Sixth Floor Software. He is a Macromedia Certified
ColdFusion developer, a member of Team Macromedia, and has
been working with ColdFusion since 1996. In addition to his
ColdFusion work, Matt also develops in Java and PHP.

matt@sixthfloorsoftware.com

Figure 3: The final version satisfies even the
“unreasonable demands”

www .cfconf.org/fusebox2004/

ColdFusionJournal.comCFDJ AUGUST 200426

Listing 1: animals.xml
<?xml version="1.0" encoding="utf-8"?>
<animals>

<animal species="Feline" subspecies="Lion">
<name>Roary</name>
<sex>Female</sex>
<color>Fawn</color>
<weight>325 pounds</weight>
<feedingTime>14:00</feedingTime>

</animal>
<animal species="Reptile" subspecies="Tortoise">

<name>Shelly</name>
<type>Box Turtle</type>
<sex>Female</sex>
<color>Green</color>
<weight>20 pounds</weight>
<feedingTime>15:00</feedingTime>

</animal>
<animal species="Feline" subspecies="Leopard">

<name>Stealthy</name>
<sex>Male</sex>
<color>Black</color>
<weight>250 pounds</weight>
<feedingTime>11:00</feedingTime>

</animal>
<animal species="Reptile" subspecies="Snake">

<name>Bitey</name>
<type>Rattlesnake</type>
<sex>Male</sex>
<color>Gray</color>
<weight>4 pounds</weight>
<feedingTime>19:00</feedingTime>

</animal>
</animals>

Listing 2: animalsHtml.xsl
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="html" />
<xsl:template match="/animals">

<html>
<head>

<title>Our Zoo Animals</title>
</head>
<body>

<h3>Our Zoo Animals</h3>
<table border="0" width="80%" cellpadding="2" cellspacing=

"1" bgcolor="#999999">
<tr bgcolor="#dedede">

<th>Species</th>
<th>Sub-Species</th>
<th>Name</th>
<th>Type</th>
<th>Sex</th>
<th>Color</th>
<th>Weight</th>
<th>Feeding Time</th>

</tr>
<xsl:for-each select="animal">

<tr bgcolor="#ffffff">
<td><xsl:value-of select="@species" /></td>
<td><xsl:value-of select="@subspecies" /></td>
<td><xsl:value-of select="name" /></td>
<td><xsl:value-of select="type" /></td>
<td><xsl:value-of select="sex" /></td>
<td><xsl:value-of select="color" /></td>
<td><xsl:value-of select="weight" /></td>
<td><xsl:value-of select="feedingTime" /></td>

</tr>
</xsl:for-each>
</table>

</body>

</html>
</xsl:template>

</xsl:stylesheet>

Listing 3: displayAnimals.cfm
<!--- read in animals.xml --->
<cffile action="read" file="#ExpandPath('.')#/animals.xml"

variable="animalsXml" />

<!--- read in animalsHtml.xsl --->
<cffile action="read" file="#ExpandPath('.')#/animalsHtml.xsl"

variable="animalsXsl" />

<!--- transform and output --->
<cfoutput>#XmlTransform(animalsXml, animalsXsl)#</cfoutput>

Listing 4: felinesHtml.xsl
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="html" />
<xsl:template match="/animals">

<html>
<head>

<title>Feline Feeding Schedule</title>
</head>
<body>

<h3>Feline Feeding Schedule</h3>
<table border="0" width="80%" cellpadding="2" cellspacing="1"

bgcolor="#999999">
<tr bgcolor="#dedede">

<th>Species</th>
<th>Sub-Species</th>
<th>Name</th>
<th>Sex</th>
<th>Color</th>
<th>Weight</th>
<th>Feeding Time</th>

</tr>
<xsl:for-each select="animal">

<xsl:sort select="feedingTime" />
<xsl:if test="@species='Feline'">

<tr bgcolor="#ffffff">
<td><xsl:value-of select="@species" /></td>
<td><xsl:value-of select="@subspecies" /></td>
<td><xsl:value-of select="name" /></td>
<td><xsl:value-of select="sex" /></td>
<td><xsl:value-of select="color" /></td>
<td><xsl:value-of select="weight" /></td>
<td><xsl:value-of select="feedingTime" /></td>

</tr>
</xsl:if>

</xsl:for-each>
</table>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Listing 5: displayFelines.cfm
<!--- read in animals.xml --->
<cffile action="read" file="#ExpandPath('.')#/animals.xml"

variable="animalsXml" />

<!--- read in felinesHtml.xsl --->
<cffile action="read" file="#ExpandPath('.')#/felinesHtml.xsl"

variable="felinesXsl" />

<!--- transform and output --->
<cfoutput>#XmlTransform(animalsXml, felinesXsl)#</cfoutput>

XSLT

Download the Code...
Go to www.coldfusionjournal.com

ColdFusionJournal.com 27AUGUST 2004 CFDJ

news

Fifth Annual Fusebox Conference
(Washington, DC) – The fifth annual Fusebox conference will be
held September 18–19, 2004, in the Washington, DC area.
Fusebox is a free programming methodology for ColdFusion
that improves program maintenance and makes for more satis-
fied clients. Speakers include Hal Helms, Jeff Peters, Sandra
Clark, and Michael Smith. The conference costs $199.
www.cfconf.org/fusebox2004.

Macromedia Delivers Update of Flash MX 2004
(San Francisco) – Macromedia has announced the immediate
availability of an update for Macromedia Flash MX 2004 and Flash
MX Professional 2004 that offers improved stability and more com-
prehensive documentation. The update (version 7.2) is available to
current Flash MX 2004 and Flash MX Professional 2004 customers
for no additional charge at www.macromedia.com/go/updates.

This update to Flash MX 2004 increases developer productivity
by reducing initial launch and compile times and making the appli-
cation lighter and more efficient to use. Significant improvements
to documentation consist of more than 400 additional code exam-
ples and new chapters on component creation and customization.

“The Flash community has been very engaged in helping us
deliver this update,” said Mike Chambers, product manager for
developer relations, Macromedia. “The result is a significant
collection of changes that substantially improve the developer
and designer experience.”

Macromedia Fulfills Promise of Web
Content Management
(San Francisco) – Macromedia has announced the Macromedia
Web Publishing System, which provides everything an organi-
zation needs to affordably build and manage Web and intranet
sites. The Macromedia Web Publishing System enables tens,
hundreds, or thousands of content contributors to publish Web
sites for internal and external communications. The WPS con-
sists of Macromedia Studio MX 2004, Macromedia Contribute
3, Macromedia FlashPaper 2, and new Contribute Publishing
Services. www.macromedia.com/go/wps/.

Macromedia Announces Contribute 3
(San Francisco) – Macromedia Contribute has received a major
upgrade. Contribute redefines Web publishing by enabling
nontechnical users to update pages on Web sites or intranets as
easily as they would edit a Microsoft Word document.
Macromedia Contribute 3 adds granular administrator control,
flexible approval workflow, editing enhancements, and
Dreamweaver MX 2004 integration to its award-winning ease-
of-use and browse-edit-publish workflow. Contribute 3 is a key
element of the new, enterprise-ready Macromedia Web
Publishing System for organizational deployments to hundreds
or thousands of business users. For more information, or to
download a preview release of Macromedia Contribute 3, visit
www.macromedia.com/go/contribute3/.

ColdFusionJournal.comCFDJ AUGUST 200428

A
big challenge when building Web appli-

cations is dealing with scalability and

performance. Sometimes these issues

are forgotten until after the application is being used

by the public and under heavy load. Performance

tuning usually happens as an afterthought when all

the code is already completed.

While I was developing the latest version of Hot Banana, I
faced the following challenge. Hot Banana is a ColdFusion
Web content management system that uses ColdFusion
Components (CFCs) extensively. It queries a database,
processes the data, and serves up dynamic Web pages every
time a user visits a Web site powered by Hot Banana. There is a
lot of data to process in order to generate a single Web page.
The dynamic navigation structure needs to be generated from
data in the database. All the dynamic content needs to be
pulled from the database and processed. Dynamic images and
links need to be processed as well.

As we added more and more functionality and control to
our Web pages I was faced with the challenge of speeding up
the time it takes to generate a Web page. It was taking more
than a full second to generate a page on our development
server, which was completely unacceptable. I was forced to
take a look at the different pieces that make up a Web page
and find ways to cut corners.

First I looked at the entire tree structure of all the Web
pages on the Web site, what we call the navigation structure.
The navigation structure is used to build dynamic menus on
the Web page, the site map, and more. Even though every page
on the Web site uses the same navigation, every page was
building it from scratch every time. We were already using a
ColdFusion Component to manage the navigation structure.
This CFC was being created by every Web page plus the
administration area. This CFC provides a number of functions
for interacting with the navigation. Most of the time was being
spent searching through the navigation to return results.

To solve this, I decided to keep the navigation CFC stored
in a shared scope. I could have stored only the data in shared
memory, but by keeping the CFC itself in memory, the Web
pages wouldn’t need to create and initialize it every time. Then
it would be able to use its internal indexes to search through
the navigation and return information quickly. Sometimes you

might just want to keep data in shared memory
with a CFC, but since our navigation CFC is the
only CFC accessing and managing the data, it made
sense to keep the data inside the CFC and keep the
CFC in shared memory. I could have put the navi-
gation CFC in any ColdFusion scope, and there are
a number to choose from.

Sometimes, the SESSION scope would
make sense for storing data and objects. For exam-
ple, this would allow each visitor to the Web site to
potentially have a different navigation structure.

This could have made sense if visitors to the Web site were
able to customize the navigation of the Web site. Since all visi-
tors would be seeing the same navigation, the SESSION scope
wasn’t the right decision.

Originally, I put the navigation CFC into the APPLICATION
scope. Hot Banana can support more than one Web site on a
single server. Each Web site is running under its own applica-
tion, so there can be separate SESSION management across
different Web sites. Since each Web site would have its own
instance of the navigation CFC and its own application, I
thought the APPLICATION scope would be a good choice.

But there was something I hadn’t considered: our administra-
tion area is kept under a different application than the public
Web site. When administrators logged in and added a Web page, I
needed to refresh the navigation CFC being used by the Web site.
Unfortunately, since this CFC was kept in the other APPLICA-
TION scope of the Web site, there was no simple way to access it.

In the end, I decided to put everything related to Hot
Banana into the SERVER scope. Since Hot Banana uses a num-
ber of different APPLICATION scopes at once, I wanted the
convenience of being able to access any CFCs and data from
any Web site. The SERVER scope is the most broadly shared
scope available. It’s shared across all applications that run on
the Web server. By putting data into this scope, you allow all
ColdFusion applications on the server to have access to these
CFCs and data. This isn’t always appropriate. If you can guar-
antee you have exclusive use of the server, you won’t have any
problems. Otherwise, you’ll need to carefully think about the
implication of having these CFCs available to the whole server.

I created a single ColdFusion struct variable within the
SERVER scope, SERVER.HOTBANANA. I then stored all the
cached CFCs and data in this struct. This prevents my SERVER
variables from interfering with other ColdFusion applications
that want to use the SERVER scope. Inside this structure, I
have a struct for each Web site on the server. This lets each site
have its own instance of the navigation CFC. Now, the admin-
istration area knows where to look to find a navigation CFC for
a particular Web site.

cfcs

Caching ColdFusion Components in Shared Memory

By Jesse Skinner

Caching CFCs can pay off in improved performance and scalability

ColdFusionJournal.com 29AUGUST 2004 CFDJ

You can see there’s no limit to the ways you can organize
your data, and each decision has its own pros and cons. It’s
important to make these decisions carefully. It helps to cen-
tralize the management of cached CFCs so that you can easily
change your decision in the future.

Originally, to create an instance of the navigation CFC, I was
using the CreateObject function, along with an initialization call:

objNavigation = CreateObject(“component”, “hotbanana.navigation”);
objNavigation.init();

Instead, I made a global custom GetObject function that
would handle the job of caching and managing CFCs (see
Listing 1). We use an initialization function, so the GetObject
function calls this function for us so that it only happens once.

By passing “true” as the second parameter in this function,
you can specify whether or not to use a cached version of the
CFC. This function assumes that you will need only one instance
of each CFC. You may not want to use this style of caching all the
time. For example, you may want to have many different
instances of a single CFC to manage different data. You should
utilize different strategies and methods of caching CFCs to take
advantage of the different ways your application uses CFCs.

You might feel inclined to start caching every CFC you can.
This is great – until the Web server starts running out of mem-
ory. If the amount of data being cached is great, and there are
many applications using cached data, this can easily become a
problem. It’s important to think about how often the data is
being used, and to try to balance the trade-off between per-

formance and memory usage. If some data is rarely accessed,
caching it won’t have a significant impact on performance.

You may also want to design an algorithm that limits the
number of CFCs cached in memory. For example, there may
be a CFC for every Web page on a Web site. Your algorithm
could cache only the top 10 requested Web pages. This would
allow a Web site to get very large without having as much
impact on the server’s memory.

Caching Different Types of Data
There’s no limit to the types of data you can cache within a

CFC. Data that takes time to generate or retrieve is a good can-
didate for caching. Queries, XML documents, structs, and even
other objects are worth caching. You may already be using the
CACHEDWITHIN attribute of CFQUERY to cache queries in
memory. This method is easy to use but lacks control. You can
clear all queries at once only by using CFOBJECTCACHE. There
is also a limit to the number of queries you can cache.

By caching queries as instance variables within CFCs you
can have a lot more control over when to refresh the data. You
also have no limit to the number of queries you cache. Parsing,
outputting, and manipulating ColdFusion XML documents can
be heavy on the server. By keeping an XML document in mem-
ory, you have the option of manipulating the document direct-
ly without needing to parse in or write out an XML document
every time. You can improve performance by accessing such
documents directly, the same way you would access structs.

Using cached CFCs as instance variables within other
cached CFCs is a very efficient way of architecting an applica-

www.fusetalk.comwww.fusetalk.com

Web based collaboration made to order.

ColdFusionJournal.comCFDJ AUGUST 200430

cfcs

tion. With Hot Banana, there are dozens of CFCs that interact
with each other. This could create a tree of CFCs, with many
being created unnecessarily. By reusing cached CFCs we cre-
ate more of an interacting web of CFCs. This actually reduces
the amount of memory taken up by the application because
no unnecessary CFCs will be created.

You can even use shared CFCs to cache data updates as
well. We were keeping track of visitors by updating the data-
base every time someone visited, but I found the hit to the
database was becoming too much. To solve this, I put a shared
CFC in memory for each Web site. This CFC was in charge of
remembering log updates (in an array), then writing all the
updates to the database once an hour.

If you’re generating dynamic HTML output, or any string
output, you can use CFSAVECONTENT to cache the output
within the CFC. This could even be the only data that you
need to cache in your application, especially when it takes the
greatest amount of time to generate the string.

Caching the results of CFHTTP can definitely improve perform-
ance. Sometimes you may be required to cache these results. If
your application is pulling in an RSS feed, often you will be allowed
to request the feed only once an hour. If this is the case, you will
certainly need to cache the results. You can just look at any func-
tion and decide if the result of that function can be cached. It can
be easy to implement this style of caching. For example, let’s say
you have a function that returns a query (see Listing 2). This func-
tion needs to hit the database only once. The result will be avail-
able in memory as long as the CFC exists. You can apply this strate-
gy to any function or block of code you want to cache.

Refreshing the Cache
Caching data is great, just as long as the data doesn’t

change. In any application, though, data is going to be chang-
ing at different times, sometimes constantly. We need to con-

sider when it is appropriate to cache data, when we will want
to refresh the cache, and how we want to manage refreshing
cached data and CFCs.

One extreme strategy is to wipe the whole cache every time
any of the data changes. This can be unnecessarily excessive.
The benefit is that it’s a very easy strategy to maintain. If all the
cached data is in a single struct in memory, performing a single
StructClear() can wipe the entire cache at once. It’s the same
strategy ColdFusion uses with cached queries, by letting us use
only CFOBJECTCACHE to clear out all cached queries. This
strategy can be appropriate if data doesn’t change very often –
and if a performance hit is acceptable when changes do occur.

At the other extreme, you may want to refresh only the
exact piece of data that has changed. You can achieve this if
you centralize all the actions on a piece of data within a single
CFC, as you may very well be doing anyway. Then, when the
data gets updated, you can clear out and regenerate it.

There are other strategies between these two extremes. You
may want to clear out the cache periodically, say, once an
hour. Or you may want to clear the cache based on certain
events that happen within the system. For example, a cached
Web page could be refreshed any time an administrator loads
the administration area for that page.

During development you may want to disable caching of
CFCs. Otherwise, as you’re making changes, your code will still
be accessing the old, cached versions. It’s important to note
that if you do this you will definitely need to test your code
with caching turned back on. Bugs relating to caching issues
are always the most confusing, frustrating, and difficult bugs
to narrow down and fix – especially if users of the system
aren’t aware of the caching going on behind the scenes.

Concurrency Issues
If only one person uses your application at a time, you like-

Listing 1
function GetObject (txtCFC, blnCached) {

var scope = SERVER.EXAMPLE;
var myObject = 0;

if (blnCached) {
if (not StructKeyExists(scope, txtCFC)) {

myObject = CreateObject(“component”, txtCFC);
myObject.init();

scope[txtCFC] = myObject;
}
return scope[txtCFC];

} else {
myObject = CreateObject(“component”, txtCFC);
myObject.init();
return myObject;

}
}

objNavigation = GetObject(“hotbanana.navigation”, true);

Listing 2
<cffunction name=”getQuery”>

<cfif not StructKeyExists(this, “myQuery”)>
<cfquery name=”this.myQuery” datasource=”myDSN”>

SELECT *
FROM table

</cfquery>
</cfif>
<cfreturn this.myQuery />

</cffunction>

Listing 3
<cfcomponent displayname="example">

<cffunction name="resetArray">
<cfset this.array = ArrayNew(1)>
<cfset this.array[1] = "First Element">
<cfset this.array[2] = "Second Element">
<cfset this.array[3] = "Third Element">

</cffunction>

<cffunction name="getItemThree">
<cfset resetArray()>
<!--- Hope nothing happens to this.array --->
<cfreturn this.array[3]>

</cffunction>
</cfcomponent>

Listing 4
<cfcomponent displayname="example">

<cffunction name="resetArray">
<cflock name=”exampleLock” timeout=”10” type=”exclusive”>

<cfset this.array = ArrayNew(1)>
<cfset this.array[1] = "First Element">
<cfset this.array[2] = "Second Element">
<cfset this.array[3] = "Third Element">

</cflock>
</cffunction>

<cffunction name="getItemThree">
<cfset resetArray()>

<cflock name=”exampleLock” timeout=”10” type=”readonly”>
<cfreturn this.array[3]>

</cflock>
</cffunction>

</cfcomponent> Download the Code...
Go to www.coldfusionjournal.com

ly won’t run into any problems. Unfortunately for us,
ColdFusion can use more than one thread at a time. This
means that while one Web page is trying to update cached
data, another Web page could be trying to retrieve this data at
the same time. There are absolutely no guarantees about the
order in which things will happen in this scenario.

Say you have a cached CFC that contains an array of data
with three items in it. The CFC has two functions, resetArray()
and getItemThree(). When the function resetArray() is called, it
first sets this.array = ArrayNew(1), then it fills the array with data.
Later, in getItemThree(), there is code that first calls resetArray(),
then returns the third element in this.array (see Listing 3).

What would happen if getItemThree() were called by two
different users at the same time? The answer is, we don’t know.
It’s possible that everything will work fine. However, it’s also
possible that immediately after this.array = ArrayNew(1) is
called, and before this.array[3] is set, the other getItemThree()
function will try to access this.array[3] and find that this array
element does not exist.

This is a very difficult situation to test. You won’t realize there
are problems with your code until it’s being used by a large num-
ber of people. Even when you do know there is a problem, it’s
difficult to be able to re-create the problem, let alone prove that
the problem has been resolved. How do we prevent problems
like this? Luckily, ColdFusion provides us with CFLOCK. What we
can do is put CFLOCK tags throughout our code (see Listing 4).

This will ensure that only one user can call this function at a
time. It will guarantee that when we access this.array[3], it will
still be initialized from the resetArray() function. When one
user is trying to call resetArray() and the other is trying to
return this.array[3], one will have to wait for the other to finish.

We might be tempted to put CFLOCK tags around all the
code in our cached CFCs. This might allow us to be certain
things will be kept consistent, but it may have an impact on
the performance of the server. Most of the time you won’t have
problems with two users accessing a function at the same
time. It’s only when the cached data is being manipulated or
accessed that you will need to be concerned. You should try to
put as little code as possible inside CFLOCK tags.

A nice way to achieve this is through the use of getter and
setter functions. These are special types of functions whose
only role is to set and return variables in a CFC. Anytime you
want to access these variables, you call these functions. Then
you can put CFLOCK tags inside these two functions. In the
getter function, we can use the CFLOCK attribute type=“read-
only”. This way, more than one getter function can run simul-
taneously with no problems and no performance implications.
Only the setter function will need type=“exclusive”.

It’s not just instance variables that we need to be con-
cerned about. Local variables in our CFC’s functions can be a
problem too. If you don’t declare your local variables at the top
of the function with the var keyword, they actually become
instance variables of the CFC. This means that when someone
is in the middle of a function, all of a sudden all the variables
being used by that function could suddenly change. The func-
tion could be in the middle of a loop, when all of a sudden it
finds itself at the start of the loop. The only way to solve this is
to be sure you declare all your variables at the top of every

function using the var keyword. This is generally a good idea
anyway, as it ensures that your variables won’t be overwriting
variables from other functions.

Conclusion
After putting these practices into play, putting the core

structure of Hot Banana in shared memory, and caching as
much data as possible, I was able to reduce the load time
of a Web page substantially. The time was reduced from
over 1,000 milliseconds to as low as 10 milliseconds for a
single Web page. This yielded a 99% improvement in per-
formance, resulting in a very stable and scalable system.

Caching CFCs in shared scopes is a good way to improve
the performance and scalability of your ColdFusion applica-
tions. There are definitely a lot of things to watch out for, but if
you do it carefully and diligently, you will be rewarded with a
big performance payoff.

About the Author
Jesse Skinner currently works as the senior architect of Hot
Banana (www.hotbanana.com). He’s excited about the future of
Web applications and is always striving to push the envelope.
He is a computer science graduate from the University of
Waterloo and is certified in Java and ColdFusion.

jesse@hotbanana.com

ColdFusionJournal.com 31AUGUST 2004 CFDJ

Java for ColdFusion Programmers, the five-day
Hal Helms, Inc. training class is designed for
ColdFusion programmers; no previous Java
experience is needed. You'll learn how to think in
objects and program in Java.

For class information and registration,
come to halhelms.com.

“I was totally intimidated by Java, but I
knew I had to learn it. Your class taught
me what I honestly thought I couldn't be
taught.“ - Sharon T

Java for
ColdFusion
Programmers?

M
any of my articles in this column

have dealt with theoretical con-

cepts and syntax of implementing

those concepts in ColdFusion. In this article, I want

to concentrate on the implementation steps you

might take when building something.

Most Web applications have a “sign me up” feature that
allows users to register. Registered users often have access to
additional information or features that anonymous users
don’t. I’m going to walk you through the process of creating a
simple login form, including database authentication and a
“remember me” checkbox.

The Database
Before you start coding this application, you’ll need to cre-

ate a database. Most login schemes include a username and
password. You can put that information in a table called Users.
The table will also need a unique identifier, called a primary
key in database terms. Here is a sample of data from the table:

UserID Username Password

1 Jeff Houser

2 CFDJ Author

3 ColdFusion Macromedia

Normally, a users table would have much more informa-
tion than just a username and password. A name, address, and
e-mail address are common additions. For the purposes of this
example, we’ll keep it simple. In a real-world application, you
should consider encrypting the passwords in your database
for security purposes. You can do this using ColdFusion’s hash
function. More information about the hash function is located
at http://livedocs.macromedia.com/coldfusion/6.1/html-
docs/funct113.htm#wp1105551. You would use the hash func-
tion before saving the user’s password into the database. For
the purposes of this example, the passwords will remain in
plain text.

You could implement a login script using just the users
table we defined, but you’ll find it limiting. The user is either
logged in, or not logged in. There is no distinction between

different levels of access. Suppose, for example, that
anonymous users can look at products, registered
users can post reviews of products, and admin
users can change product information. You’ll need
something more than an “Authenticated” or “Not
Authenticated” security structure. To do this we’ll
need to be able to group users into security groups.
The SecurityGroups table will need a primary key
and a group name. This is an example of some pos-
sible groups:

GroupID GroupName

1 Admin

2 Anonymous

3 Registered

You’ll also need an intersection or linking table to associate
a user with his or her groups. This table will contain the
GroupID and the UserID. The reason for creating this as a sep-
arate table is so that a single user can be in multiple groups,
and a single group can have multiple users inside of it. This is
known as a many-to-many relationship in the world of data-
base design.

Here is an example of the SecurityUserGroups intersection
table:

GroupID UserID

1 (Admin) 1 (Jeff / Houser)

3 (Registered) 1 (Jeff / Houser)

3 (Registered) 3 (ColdFusion / Macromedia)

I added the group and user names next to the ID in paren-
theses to more easily show the relations. In a relational data-
base, you would store only the ID. Our finished database
structure is seen in Figure 1.

ColdFusionJournal.comCFDJ AUGUST 200432

Creating a Remember Me Login

By Jeffry Houser

Implementing a login script on your site

Figure 1: Database diagram

cf101

Before accessing this database from
your ColdFusion code, you’ll have to create
a datasource in the ColdFusion adminis-
trator. Setting up the datasource is beyond
the scope of this article, but it’s a pretty
straightforward task and you can read
about setting up datasources for any data-
base at
http://livedocs.macromedia.com/coldfu
sion/6.1/htmldocs/datasou4.htm#wp1277
125.

The Login Form
With our database ready for use, we can

start examining the login form. Most forms
have two parts: an input page and a pro-
cessing page. The input page asks for the
username and password. It also has a
checkbox for a “Remember Me” function-
ality. The code behind the form is shown in
Listing 1.

The login form can be seen here:

Enter Jeff in the username field and
Houser in the password field. Check the
Remember Me box and click submit. This
brings us to the processing page (see
Listing 2).

The RememberMe form variable value
comes from a checkbox. If not checked
when the form is submitted, the variable
will not exist on the form processing page.
You can use the cfparam tag to default if
this situation occurs. The second step in
the process is to validate the user’s login
information against the database. The
cfquery tag is used to run the database
query. The query joins the users table and
the SecurityUserGroups table, where the
username and password fields are equal to
the input of the form. The query retrieves
all information from the users table and
the list of GroupIDs from the intersection
table. If the database stored hashed pass-
words, we would change the query com-
parison to:

Users.password = ‘#hash(form.password)#’

This allows us to correctly compare two
hashed values, not plain text passwords.
This way we are keeping the user’s pass-
word information secure.

We can check the RecordCount variable
of our query to see if the query returned
any rows. If the query did not return any
rows, then the user did not enter a valid
username and password combination. The
login should fail. If rows are returned, then
the login was a success. The code creates
two session variables to process the login.
To make use of session variables, you’ll
have to use the cfapplication tag.
ColdFusion’s application framework is
beyond the scope of this article; however,
you can read about it at
http://livedocs.macromedia.com/
coldfusion/6.1/htmldocs/tags-pa3.htm#wp
1097308.

The first value, LoggedIn, is a Boolean
value that specifies that the user has
logged in. I would default this value to
false when the session is initialized. The
second variable, groups, contains a list of
all the groups that the user is in. The
ValueList will give us a list from the col-
umn in the query.

Later in your application, when you
have to decide whether a user should have
access to a resource or not, you can use
ListFind against the groups variable to see
if the user is allowed. Here’s an example:

<cfif ListFind(session.Groups, 1)>
allow Access

<cfelse>
No Access

</cfif>

If the user is in the admin group he or she
can see the resulting HTML code, or access
the corresponding resource. If not, then he
or she will not be given access.

In this code, we are rolling our own
security scheme. Many applications will
use this approach, due to the complexity
of security functions in the pre-CFMX
days. However ColdFusion MX introduced
a much improved security scheme using
some new tags: cflogin, cfloginuser, and
cflogout. They allow you to log in a user
and set up a list of roles that ColdFusion
will handle internally. The roles tie in with
the role attributes of functions inside a
ColdFusion component. These new tags
are not in wide use yet, but they are defi-
nitely worth checking out if you are build-

ColdFusionJournal.com 33AUGUST 2004 CFDJ

Figure 2: Login form

…reprint it!
– ColdFusion Developer’s Journal
– Java Developer’s Journal
– Web Services Journal
– Wireless Business & Technology
– MX Developer’s Journal
– PowerBuilder Developer’s Journal
– .NET Developer’s Journal
– LinuxWorld Magazine
– WebSphere Journal
– WLDJ

Contact Kristin Kuhnle
201 802-3026

kristin@sys-con.com

Once
you’re in

it…

REprints

ColdFusionJournal.comCFDJ AUGUST 200434

cf101

ing an application from the ground up (http://livedocs.macro-
media.com/coldfusion/6.1/htmldocs/appsecu6.htm). The rea-
son I don’t use them in my development is because my biggest
project of the moment is being built to run off of BlueDragon,
which does not yet support the functions.

Remembering the User
The one portion of code that I haven’t explained yet is the

“remember me” portion, so let’s look at it in detail. There are
many different ways you could implement the “remember me”
portion of code. In most methods, you’ll set a cookie on the
user’s machine, and store the same value in the database.
When the user returns to the site, you can check to see if the
cookie exists. If it does, you can retrieve the user’s information
from the database based on the cookie value. Simpler systems
where security is not an issue may store the user’s primary key
ID. More complex systems with heavier security requirements
may assign a UniqueID value, created with the CreateUUID
function. Some systems I’ve worked with will store the CFID
and CFTOKEN values generated by ColdFusion and used for
session management, and use those to remember the user.

For the purposes of our sample, we are going to store the
user’s primary key as a cookie, but remember that in applica-
tions where security is a priority, this is probably not your best
move. If form.RememberMe is set to true, then we use the
cfcookie tag to create a cookie on the user’s browser. We name
the cookie UserID. The value is set to the UserID value
returned from the query. It is set to never expire.

Setting the cookie is only the first step. When a user comes
to the site, something will have to be implemented to check to
see if we know who they are, or not. We are going to put this

code in the Application.cfm. The code in the Application.cfm
will look like an abbreviated version of the code in the login-
processing page (see Listing 3).

First the code checks whether the IsLoggedIn session vari-
able is defined. If it isn’t, then this is the first time a user has
come to the site. Next, we check if the UserID cookie variable
exists. If it does, Next we run a query to get the user data based
on the UserID. If the query finds the user, the code sets the
two session variables. If not, it defaults them to the value. If
the cookie doesn’t exist at all, it defaults the session values.

Conclusion
This article demonstrated a simple method for implementing

a login script on your site. It incorporated many common securi-
ty elements and used many common ColdFusion tags. The
approach I took in this article is not the only approach that
could be used, but it is simple yet elegant. For those who want
more, you can check out the authenticationAPI included in
Macromedia’s DRK 7. In my next column I’ll talk more in depth
about ColdFusion’s application framework and the cfapplication
tag, including setting up the session and application scopes.

About the Author
Jeffry Houser has been working with computers for over 20
years and in Web development for over 8 years. He owns a con-
sulting company, and has authored three separate books on CF,
most recently ColdFusion MX: The Complete Reference
(McGraw-Hill Osborne Media).

jeff@instantcoldfusion.com

Listing 1
<form action="loginip.cfm" method="post">
Username: <input type="Text" name="Username">

Password: <input type="Text" name="Password">

<input type="Checkbox" name="RememberMe" value="True"> Remember Me

<input type="Submit">

</form>

Listing 2
<!---- Get User's info based on db ------>
<cfquery name="GetUser" datasource="CFDJCF101August">
select users.*, SecurityUserGroups.GroupID
from users, SecurityUserGroups
where users.UserID = SecurityUserGroups.userID and
users.username = '#form.username#' and
users.password = '#form.password#'

</cfquery>

<!---- If the recordcount is 0, the login info is invalid --->
<cfif GetUser.recordcount GTE 1>
<cfset session.loggedin = true>
<cfset session.Groups = ValueList(getUser.GroupID)>

<!--- set the RememberMe cookie ----->
<cfif form.RememberMe is true>
<cfcookie name="UserID" value="#GetUser.UserID#" expires="never" >

</cfif>

<cfelse>

You didn't log in

</cfif>

Listing 3
<cfif not IsDefined("session.loggedin")>
<cfif IsDefined("cookie.UserID")>
<!---- Get User's info based on db ------>
<cfquery name="GetUser" datasource="CFDJCF101August">
select users.*, SecurityUserGroups.GroupID
from users, SecurityUserGroups
where users.UserID = SecurityUserGroups.userID and
users.userID = #Cookie.UserID#

</cfquery>

<!---- If the recordcount is 0, the login info is invalid --->
<cfif GetUser.recordcount GTE 1>
<cfset session.loggedin = true>
<cfset session.Groups = ValueList(getUser.GroupID)>
<cfdump var="#session#">

<cfelse>
<cfset session.loggedin = false>
<cfset session.Groups = "2">

</cfif>
<cfelse>
<cfset session.loggedin = false>
<cfset session.Groups = "2">

</cfif>
</cfif> Download the Code...

Go to www.coldfusionjournal.com

ColdFusionJournal.comCFDJ AUGUST 200436

F
or more than seven years, Fusebox

(www.fusebox.org), now in its fourth ver-

sion, has been the dominant framework

for building ColdFusion applications. During that

time, Fusebox has evolved from a set of best prac-

tices into a mature framework capable of tackling

very large jobs while remaining easy enough to use for every-

day small tasks.

As one of the contributors to Fusebox, I’ve been very grati-
fied by the tremendous response from developers who regu-
larly e-mail me, relating stories of their success using Fusebox.
Here’s a sample e-mail I received recently: “I’m writing to
thank you for your efforts on Fusebox. I went to one of your
classes in DC three years ago, and Fusebox, along with FLiP,
has let me turn out one success after another. My boss started
out skeptical, but he’s seen the results and now Fusebox is a
requirement for all new hires. Fusebox rocks!”

Of course, there are a few who e-mail me to tell me how
much they hate Fusebox. Here’s one such e-mail: “Fusebox,
what exactly is it? A methodology? A framework? I think it’s a
cult, turning out little Fusebox disciples that spread the stupid
Fusebox message. I’ve gone on too many consultant gigs
where they required Fusebox, and I spend half my time
explaining how lame Fusebox is.” I was tempted to respond to
my correspondent that perhaps he would have had better suc-
cess if he had spent all of his time solving their problem
instead of engaging in religious wars, but I simply thanked
him for his post.

Over the last year, I’ve worked with Ben Edwards on a new
framework, called Mach-II (www.mach-ii.com). Since I’m
associated with both Fusebox and Mach-II, I receive e-mails
asking me which one I really like. Well, I like both of them –
for different reasons. In this article, let’s take a look at what
Web frameworks are meant to do and examine the similarities
and differences between Fusebox and Mach-II.

What is a framework? The definition I find the most helpful
comes from the Earth System Modeling Framework, a collabo-
ration of universities and corporations concerned with earth
science: “We use the term framework to refer to a structured

collection of software building blocks that can be
used and customized to develop components,
assemble them into an application, and run the
application.”

A framework provides prebuilt and pretested
code that can be used as a skeleton on which to
build applications. Web frameworks may be light-
weight or heavyweight. Heavyweight frameworks
typically apply themselves to a particular domain
where they offer greater help in building domain-
specific applications and require a greater degree of

conformity as to the code being written. Lightweight frame-
works are usually more generic (meant to deal with many dif-
ferent domains); they offer basic “plumbing” assistance and
provide greater latitude in the way that developers write code.

Both Fusebox and Mach-II are lightweight frameworks.
They offer help connecting the presentation tier of an applica-
tion with the business logic and data persistence tiers.

Why bother using a framework? Here are a number of rea-
sons:
• Improved reliability: Working with the prebuilt compo-

nents of both Fusebox and Mach-II means working with
pretested components. This reduces the bugs to which
“one-off” code is prone.

• Developer productivity: Having prebuilt code assets means
that a substantial percentage of the code you’ll need to
make your application run has already been written. And
though all frameworks have a learning curve, the price to
learn the framework is paid once while the benefits in
terms of faster delivery of software continue to pay off.

• Better, more granular security: A robust security model is
not a trivial thing to implement. It just makes sense to have
base security capabilities built into a framework rather than
having to develop one for each new application.

• Easier team development: It may be, as the old song says,
that you say toe-MAY-toe and I say toe-MAH-toe, but by
agreeing on a common framework, we can work on differ-
ent aspects of an application without fears that our two
efforts will be incompatible.

• Faster delivery: Given coders with the same skills, a devel-
opment team that starts off with 30% of its code written for
it will have a substantial advantage when working to a tight
deadline.

• Reusable code assets: Code written for one specific applica-
tion within a given framework context can often be reused
for another application.

foundations

Fusebox or Mach-II?

By Hal Helms

A look at the strengths and weaknesses of both frameworks

ColdFusionJournal.com 37AUGUST 2004 CFDJ

• Less expensive development: All of the
above benefits boil down to this: it
costs less to build the same applica-
tion with a framework than without it.
In the competitive environments in
which most of us work, the cost differ-
ential can be a very important factor.
Every framework, like every applica-

tion, has design tradeoffs. We start off
on one path – taking this road rather
than that other one – and those choices
have consequences. Many of the reli-
gious wars fought in the tech sector are
brought about by one partisan concen-
trating on the strengths of his/her par-
ticular choice, ignoring the tradeoffs
involved in that choice. And, of course,
the disputant on the other side does the
same. These “great debates” are usually
framed in the most simplistic possible
way: Which is better, A or B? But, with-
out specifying what they mean by “bet-
ter,” both sides argue at cross purposes.

The framework we choose should be
determined by our own circumstances
and needs. Fusebox and Mach-II fit the
same architectural role, but approach
their jobs from different perspectives
and offer different benefits. Both
Fusebox and Mach-II rely on an XML
configuration file whose chief job is to
determine what actions shall be taken in

response to a specific request. Both
frameworks allow developers to extend
the basic framework by means of “plugin
points” – specific times in the execution
of a request where developer-provided
code is run. Both frameworks allow for
separation of presentation code from
business logic and data persistence.

Those are their similarities. Their dif-
ferences lie chiefly in the way that both
frameworks solve the same problem.
Mach-II takes an unabashedly object
oriented approach to application devel-
opment. Developers make use of the
framework by using and extending
prewritten classes.

Mach-II was conceived as an imple-
mentation of the Model-View-Controller
(MVC) design pattern, adapted for the
Web. This imposes certain restrictions
on developers. Done correctly, the
model part of MVC is separate from any
single application. When creating the
model layer, developers make a scale
model of the domain in which they are
interested. Model components have no
presentation aspect. Instead they serve
to capture business logic in the context
of objects.

Let’s take an example. Here is a CFC
that models an Employee for the ABC
company.

<cfcomponent displayname="Employee">
<cfset variables.firstName = "" />
<cfset variables.lastName = "" />
<cfset variables.dateOfHire = "" />
<cfset variables.payStrategy = "" />

<!--- init function, a pseudo-constructor,
intentionally omitted from code printout --->

<!--- getters/setters for instance variables
intentionally omitted from code printout --->

<cffunction name="getYearsInService"
access="public" returntype="numeric"
output="false">

<cfreturn DateDiff('yyyy', now(),
getDateOfHire()) />
</cffunction>
<cffunction name="isVested" access="public"
returntype="boolean" output="false">

<cfif getYearsInService() GT 5>
<cfreturn true />
</cfif>

<cfreturn false />
</cffunction>

<cffunction name="getPayDue" access="public"
returntype="numeric" output="false">

<cfreturn getPayStrategy().getPayDue(this)
/>
</cffunction>

</cfcomponent>

Notice that there is no presentation
code. There is also no data persistence
code: no queries to get information
from–or write information to–a database.
The reason is that domain models con-
fine themselves to modeling the business
itself. They don’t concern themselves
with how users might view the business
or with what interface will be used to
interact with the model; nor are they

concerned with their own persistence.
For many ColdFusion programmers,

that just seems wrong. How can you get
information without a database? What
good is a model if users can’t interact
with it? From the object oriented (OO)
viewpoint, though, what we have is a
good example of highly cohesive encap-
sulation. An Employee object should
only be concerned with its own, narrow
sphere of interest. It’s not that OO pro-
grammers aren’t concerned with issues
of presentation and data persistence.
There will be other objects, specialized
for those jobs, to handle these aspects.

This “object think” gives rise to many
highly specialized components that are
interdependent on other components to
accomplish their work. At runtime,
objects send messages back and forth to
other objects in response to a particular
request. In fact, a running OO application
greatly resembles a complex conversation
among many participants. The “smarts”
of the model lie not in any one compo-
nent, but in the interaction of all of the
components. For an analogy, you might
think of an anthill.

As someone who teaches OO to
ColdFusion programmers, I can attest to
how utterly foreign this type of develop-
ment initially seems to programmers
reared on the procedural model. But talk
to these same procedural programmers by
the end of the class, and an overwhelming
majority, having become accustomed to
this strange, new way of thinking, see the
greater maintainability and reusability of
individualized components.
A well-constructed model can work with
many different applications and we get
real code reuse, not simply “copy and
paste” repurposing of code.

Mach-II is ideal for this type of devel-
opment. It provides a way to integrate
individual model, data persistence, and
view components into an application,
while keeping the separate parts sepa-
rate. If you are very comfortable working
with object orientation, you’ll likely find
Mach-II a natural fit.

Fusebox is a procedural framework
that can work with object models (just
as Mach-II does) but can also be used by
procedural programmers writing proce-
dural code. Fusebox 4 also encourages
the use of the MVC design pattern
(adapted for the Web), but does not
require developers to adopt MVC.

Figure 1: Web framework

–continued on page 39

T
here are two basic Web server load balanc-

ing options: hardware-based and soft-

ware-based. The latter have been slowly

disappearing from the enterprise while the former

have been gaining a larger presence.

Many software-based options have reached the
end of their product life cycle. Macromedia ClusterCATS is
among those end-of-life products; it has not been ported to
IIS6. The primary software-based Web server load-balancing
(actually failover rather than load-balancing) option with IIS6 is
MS NLB.

ColdFusion Web sites on IIS5 running multiple servers clus-
tered with ClusterCATS will soon need to transition to either
MS NLB or a hardware-based solution. While clustering CF on
JRun is always an option for the application servers, this does
not provide a means to cluster Web servers. Since session traffic
must pass through a Web server, something more robust than
DNS round-robin and more application-oriented than MS NLB
is desirable in the enterprise. ClusterCATS has an acronym suf-
fix that stands for Content, Application & Transaction Smart. It
is possible to replace ClusterCATS with a hardware-based solu-
tion that offers similar features, but with much greater load
capacity and robustness.

Hardware-based options have been steadily improving over
the past eight years. Most high-end hardware load balancing
devices (HLDs) are now application-aware; they not only moni-
tor the health of a Web server, but also the health of an applica-
tion server. If a Web server is running, but an application server
is stalled, most HLDs will redirect traffic away from the stalled
server even though the Web server is alive. Only five years ago,
in order to get a LocalDirector to react to monitor the health of
a CF application, you had to use the ClusterCATS dynamic
feedback protocol (dfp) agent to communicate the state of the
application to the LocalDirector. Virtually all newer devices can
monitor a content string produced by an application server and
react to a problem faster than the dfp agent could register the
status of an application.

Many HLDs have algorithms that can tell when there is a
degradation in the performance of a server. Sometimes, a Web
or application server in a pool may be handling sessions in a

decreased capacity; most high-end HLDs are quite
adept at ensuring that the best performing server is
the one to which the inbound traffic is directed.

Some HLDs are also very adaptable to unique
infrastructure requirements. They can operate at
many layers of the OSI model. Figure 1 shows an
HLD sitting on a network without operating as a
bridge or a router; it is connected to a flat network by

a single network interface card and consequently is
about as easy to integrate as a PC. In this example,
an F5 BIG-IP is managing session traffic both in

front of the Web servers and between distributed Web servers
and application servers.

Competition in the HLD space is very aggressive; manufac-
turers are offering trade-in options and competitive upgrades.
There is even a large used hardware market where many a fru-
gal network engineer and Webmaster have found a high-end
HLD at a low-end price. Be careful though – caveat emptor –
there’s a lot of junk out there on the used market as well. And if
you are running an enterprise operation, there is no replace-
ment for the professional support team and the software

ColdFusionJournal.comCFDJ AUGUST 200438

Web Server Load-Balancing Options

By Frank S. DeRienzo

load balancing

Making the transition to hardware-based

Figure 1: ColdFusion form for creating new Java pets

ColdFusionJournal.com 39AUGUST 2004 CFDJ

upgrades that come with a new purchase.
Here are some tips to help you make the transition on

your multi-server CF site from a software-based Web
server load balancing solution to a hardware-based
option.
1. Carefully choose an HLD with the feature set that best

matches your needs; some HLDs work better as
routers than they do as bridges, for example. At least
one high-end option can fit into your network with as
little complication as adding a server. Look at your net-
work infrastructure and decide what will fit best.

2. Decide whether you need SSL termination at the HLD.
Some HLDs can accelerate SSL traffic from a single vir-
tual IP address (VIP) and direct traffic back to multiple
servers in a pool, while some require that SSL traffic be
terminated at the Web server. The former option
requires only a single certificate for multiple servers,
while the latter requires a certificate for each Web serv-
er.

3. Keep the initial configuration simple. If you wish to
integrate JRun connector-based application-level load
balancing or session replication, you may wish to
begin with a simple one-to-one Web server to CF serv-
er correlation and get that operational behind your
new HLD before moving on to more complex configu-
rations.

4. If CF is distributed onto separate platforms from your
Web servers, you may wish to use your new HLD to
balance traffic in front of the Web server and also
between the Web servers and the CF servers. See the
clustering section of the Macromedia CF DevCenter
for details on this option.

Hardware has always been a more robust Web server
load balancing option; it is quickly becoming the only
viable option in the enterprise. Mission-critical, multi-
server CF sites with heavy traffic should include hard-
ware-based load balancing.

About the Author
Frank S. DeRienzo is part of the Macromedia MX
Professional Services team. At Macromedia, he has focused
on high availability and scalability through Web site clus-
tering and Web server integration with various hardware
load balancing and content management platforms. Prior
to joining BrightTiger/Allaire/Macromedia in June 1997, he
had a distinguished military career with the U.S. Army
Rangers and Special Forces.

fderienzo@macromedia.com

“Hardware ...is quickly
becoming the only viable
option in the enterprise”

So, which is better? I’ll give you a breakdown of what I consider
to be the strengths and weaknesses of both frameworks, but first,
I’d like to encourage you to find out more about both frameworks
by attending the annual Fusebox conference on September 18–19
(Saturday–Sunday) in Rockville, Maryland (DC area).

This year, we’ll be releasing version 4.1 of Fusebox at the con-
ference. This newest version includes native XML support for
object invocation and a new assertion mechanism, as well as other
improvements. There will be talks and hands-on workshops.
Whether you’re an old Fusebox pro, or someone who wants to
evaluate Fusebox, I highly recommend coming to the conference.
For more info and registration, go to www.cfconf.org/fusebox2004.

In short, there is no single answer to the question, “Which is
better?” It depends on your background, on the makeup of your
development environment, and on what you’re trying to accom-
plish. With both Mach-II and Fusebox, we have a well-thought-out
and implemented framework for helping us write applications bet-
ter and faster. By any standards, the choice of either framework is
a winning one.

See you at the Fusebox conference!

About the Author
Hal Helms (www.halhelms.com) is a Team Macromedia member who
provides both on-site and remote training in ColdFusion, Java, and
Fusebox. Hal is cofounder of the Mach-II project.

hal.helms@teamallaire.com

Fusebox or Mach-II? –continued from page 37

Strengths Weaknesses

Fusebox • excellent for team development • encapsulation model not as strong
• mature • code reuse through copy/paste
• has supporting methodology (FLiP)
• relatively easy to learn
• good documentation with Fusedocs
• strong community support
• excellent performance due

to parsing cycle

Mach-II • excellent encapsulation model • works better with small teams of
• reuse of code rather than experienced OO programmers

repurposing of code
• better support for framework • harder to learn

“plug-ins”
• helps developers fully embrace • no accompanying methodology

the OO model
• can be used with CFCs

or with Java

ColdFusionJournal.comCFDJ AUGUST 200440

ColdFusion
For more information go to...

Alabama
Huntsville
Huntsville, AL CFUG
www.nacfug.com

Alaska
Anchorage
Alaska Macromedia User Group
www.akmmug.org

Arizona
Phoenix
www.azcfug.org

Arizona
Tucson
www.tucsoncfug.org

California
San Francisco
Bay Area CFUG
www.bacfug.net

California
Riverside
Inland Empire CFUG
www.sccfug.org

California
EL Segundo
Los Amgeles CFUG
www.sccfug.org

California
Irvine
Orange County CFUG
www.sccfug.org

California
Davis
Sacramento, CA CFUG
www.saccfug.org

California
San Jose (temporary)
Silicon Valley CFUG
www.siliconvalleycfug.com

California
San Diego
San Diego, CA CFUG
www.sdcfug.org/

California
Long Beach
Southern California CFUG
www.sccfug.org

Colorado
Denver
Denver CFUG
www.denvercfug.org/

Delaware
Kennett Square
Wilmington CFUG
www.bvcfug.org/

Delaware
Laurel
Delmarva CFUG
www.delmarva-cfug.org

Florida
Jacksonville
Jacksonville, FL CFUG
www.jaxfusion.org/

Florida
Winter Springs
Gainesville, FL CFUG
www.gisfusion.com/

Florida
Plantation
South Florida CFUG
www.cfug-sfl.org

Florida
Tallahassee
Tallahassee, FL CFUG
www.tcfug.com/

Florida
Palm Harbor
Tampa, FL CFUG
www.tbmmug.org

Georgia
Atlanta
Atlanta, GA CFUG
www.acfug.org

Illinois
East Central
East Central Illinois CFUG
www.ecicfug.org/

Indiana
Avon
Indianapolis, IN CFUG
www.hoosierfusion.com

Indiana
Mishawaka
Northern Indiana CFUG
www.ninmug.org

Iowa
Johnston
Des Moines, IA CFUG
www.hungrycow.com/cfug/

Kentucky
Louisville
Louisville, KY CFUG
www.kymug.com/

Louisiana
Lafayette
Lafayette, LA MMUG
www.cflib.org/acadiana/

Maryland
Lexington Park
California, MD CFUG
http://www.smdcfug.org

Maryland
Rockville
Maryland CFUG
www.cfug-md.org

Massachusetts
Quincy
Boston, MA CFUG
www.bostoncfug.com

Michigan
East Lansing
Mid Michigan CFUG
www.coldfusion.org/pages/index.cfm

Minnesota
Brooklyn Park
Twin Cities CFUG
www.colderfusion.com

Missouri
Overland Park
Kansas City, MO CFUG
www.kcfusion.org

Missouri
O'Fallon
St. Louis, MO CFUG
www.stlmmug.com/

New Jersey
Princeton
Central New Jersey CFUG
http://www.cjcfug.us/

Nevada
Las Vegas
Las Vegas CFUG
www.sncfug.com/

New York
Albany
Albany, NY CFUG
www.anycfug.org

New York
Brooklyn
New York, NY CFUG
www.nycfug.org

New York
Syracuse
Syracuse, NY CFUG
www.cfugcny.org

North Carolina
Raleigh
Raleigh, NC CFUG
www.ccfug.org

Ohio
Dayton
Greater Dayton CFUG
www.cfdayton.com

Oregon
Portland
Portland, OR CFUG
www.pdxcfug.org

U.S.

cfugs

User Groups
 http://www.macromedia.com/cfusion/usergroups

ColdFusionJournal.com 41AUGUST 2004 CFDJ

ColdFusion User Groups
provide a forum of support
and technology to Web profes-
sionals of all levels and profes-
sions. Whether you’re a
designer, seasoned developer,
or just starting out –
ColdFusion User Groups
strengthen community,
increase networking, unveil the
latest technology innovations,
and reveal the techniques that
turn novices into experts, and
experts into gurus.

About CFUGsPennsylvania
Carlisle
Central Penn CFUG
www.centralpenncfug.org

Pennsylvania
Exton
Philadelphia, PA CFUG
www.phillycfug.org/

Pennsylvania
State College
State College, PA CFUG
www.mmug-sc.org/

Rhode Island
Providence
Providence, RI CFUG
www.ricfug.com/www/meetings.cfm

Tennessee
LaVergne
Nashville, TN CFUG
www.ncfug.com

Tennessee
Germantown
Memphis, TN CFUG
www.mmug.mind-over-data.com

Texas
Austin
Austin, TX CFUG
www.cftexas.net/

Texas
Corinth
Dallas, TX CFUG
www.dfwcfug.org/

Texas
Houston
Houston Area CFUG
www.houcfug.org

Utah
North Salt Lake
Salt Lake City, UT CFUG
www.slcfug.org

INTERNATIONAL

Australia
ACT CFUG
www.actcfug.com

Australia
Queensland CFUG
www.qld.cfug.org.au/

Australia
Southern Australia CFUG
www.cfug.org.au/

Australia
Victoria CFUG
www.cfcentral.com.au

Australia
Western Australia CFUG
www.cfugwa.com/

Brazil
Brasilia CFUG
www.cfugdf.com.br

Brazil
Rio de Janerio CFUG
www.cfugrio.com.br/

Brazil
Sao Paulo CFUG
www.cfugsp.com.br

Canada
Kingston, ON CFUG
www.kcfug.org

Canada
Toronto, ON CFUG
www.cfugtoronto.org

Ireland
Dublin, Ireland CFUG
www.mmug-dublin.com/

Italy
Italy CFUG
www.cfmentor.com

Japan
Japan CFUG
cfusion.itfrontier.co.jp/jcfug/jcfug.cfm

Scotland
Scottish CFUG
www.scottishcfug.com

South Africa
Joe-Burg, South Africa CFUG
www.mmug.co.za

South Africa
Cape Town, South Africa CFUG
www.mmug.co.za

Spain
Spanish CFUG
www.cfugspain.org

Switzerland
Swiss CFUG
www.swisscfug.org

Thailand
Bangkok, Thailand CFUG
thaicfug.tei.or.th/

Turkey
Turkey CFUG
www.cftr.net

United Kingdom
UK CFUG
www.ukcfug.org

ColdFusionJournal.comCFDJ AUGUST 200442

D
o you want to extend your searching

options beyond the basics? Would auto-

mated “Related Items” functionality

have clients beating a path to your door? Here’s one

way to go about it.

The Problem
Keyword search is one of the most frequently requested fea-

tures of modern Web development and we all have our own
preferred solutions. Approaches based on Verity, Lucene, full-
text indexes, or plain old SQL are all popular, but, while they
provide basic search functionality, their limitations are well
documented. What if you want a bit more than just matching
occurrences of a couple of keywords? What if you want to relate
entire content items on your site to each other, or to items on
other Web sites? Just how do you power that “Related Items…”
section that your client has seen on Amazon and just has to
have?

There are two fundamental approaches to tackling this:
1. Human intervention: You could build a system that allows

site editors to manually link different content items together
or to set up a classification scheme to link items; or you

could take the Amazon approach, recording user
interactions and using collaborative filtering tech-
niques.

2. A more sophisticated approach to searching:
Techniques such as latent semantic indexing (LSI)
and Bayesian analysis are effective but involve
costly technologies and time-consuming integra-
tion.

Let’s assume we don’t want to increase the edito-
rial overhead on our client, that our site will not
have the level of user interaction required for col-

laborative filtering, and that we certainly don’t have the budg-
et to buy Autonomy. This article will take a few introductory
steps into the LSI jungle and explain the basics of building
and using a keyword vector space.

The Theory
The vector space is the underpinning of LSI; it is the math-

ematical representation of all the content items in your
repository, based upon the concept of the term space. The
term space is built by taking each individual keyword in the
content repository and assigning it a geometrical axis.
Individual items can be plotted as vectors in this high-dimen-
sional term space, based on the keywords they contain and
their frequency.

The vectors of items that share multiple keywords will be

Building a Keyword Vector Space Engine
in ColdFusion

By Matt Perdeaux

vector space

Adding an extra dimension to your
keyword searches

ColdFusionJournal.com

close together in the vector space, whereas items that
share few keywords will be farther apart. Once this math-
ematical model is set up, calculating their degree of simi-
larity is simply a matter of finding the angle between vec-
tors.

Confused? Let’s look at a basic example. We have two
articles on our Web site. The first article contains the
words “web” twice and “blog” once. Of course, proper
Web site content will contain much more than two key-
words, but it is easier for now to visualize the idea with
just two words.

Our term space will therefore consist of two orthogo-
nal axes – one representing the keyword “web” and the
other “blog”. We can plot a vector for the article onto this
term space – two units along the “web” axis and one
along the “blog” axis (see Figure 1).

Now that the vector space has been set up, additional
articles can be plotted as vectors in the same space. The
second article contains the word “blog” twice and “web”
once, so its vector will appear alongside the first vector
(see Figure 2).

The angle between these vectors is the measure of the
similarity of the two articles. The angle between two vec-
tors A and B can be found using the cosine measure – a
rearrangement of the scalar (or dot) product equation:

cos = A . B
|A| . |B|

which for our example vector space looks like:

A = 1i + 2j,
B = 2i + 1j

cos = (1i + 2j) . (2i + 1j) = (1)(2) + (2)(1) = 4 = 0.8

√12 + 22 . √22 + 12 √5 . √5 5

If two vectors are identical, the angle between them
will be 0º, the cosine of which is 1. Two perpendicular
vectors (no shared keywords) will have an angle of 90º
and a cosine of 0. So the above result multiplied by 100
will return the match measurement; the two articles show
80% similarity based on the vector space analysis.

That’s the theory behind the vector space approach.
The following sections will walk through a basic example
of its implementation.

The Solution
The example consists of two templates: default.cfm

(see Listing 1) sets up some sample content and calls
methods in vector.cfc (see Listing 2) which build the term
space, build the item vectors, and calculate the cosine
measures. The template displays one full content item
and lists its matches by relevance.

Step 1: Set Up Sample Data
We start by setting up some sample content items to

fire at the vector space engine. The sample content in

o_

o_

ColdFusionJournal.comCFDJ AUGUST 200444

Listing 1 is stored as an array of structures and consists of five
short items about two distinct subjects, pasted from Google
News (UK).

Step 2: Set Up the Term Space
The term space is effectively a list of the unique keywords

in content. Each keyword will be represented by an axis in the
term space. The content array (arItems) is sent to the
prepareTermSpace public method in vector.cfc (see Listing 2).
This method loops through the array and concatenates all the
titles and bodies of the items into one long string. This aggre-
gate string is then sent to the getUniqueKeywords private
method (see Listing 2). This method’s job is to return an array
containing all keywords, but it goes through a number of
rationalizing steps before producing the final list.
1. First, all HTML and punctuation is removed by calling

another private method, removePunctuation (see Listing 2),
which runs through a series of regular expressions to strip
the string down to raw text.

2. The next step is to get rid of all the “stop” words in the string.
Stop words are common articles, pronouns, and so forth that
do not convey meaning on their own and are of little use in
the search engine context. The removeStopWords private

method (see Listing 2) loops through an example stop-word
list and removes any matches. The compilation of stop-word
lists is an art; depending on your content, there may be addi-
tional words you can add to the list. For instance, if your site
is about ColdFusion, you can probably add the words
“ColdFusion,”,“cfm,” and “Macromedia” to your stop list. The
more omnipresent keywords filtered out at this stage, the less
processing needed to calculate the item vectors.

3. The next step we should be thinking about is called stem-
ming. The list of keywords will contain the same words in
different forms: singular and plural, different verb tenses,
and so forth. Stemming is a technique that removes suffixes
from words, leaving a common root. A popular algorithm
used for this purpose is the Porter Stemming Algorithm,
which is explained in great detail at www.tartarus.org/
~martin/PorterStemmer. For brevity, we will turn a blind
eye to stemming in this example, but we are missing out on
a further reduction in the term space dimensions and the
associated performance and usability benefits.

4. The list of keywords is sorted alphabetically (after convert-
ing the list to an array, for speed) and duplicates are
removed. The getUniqueKeywords method can return
either a basic keyword list or a list with a record of keyword
frequency. The term space does not need to record frequen-
cy, so we need only the straight list for now. We will use the
frequency option later, when we call the same method
while calculating item vectors.

The final result is an array (arTermSpace) listing the unique
keywords contained in the sample content. Each keyword rep-
resents an axis in the term space.

Step 3: Build the Item Vectors
With the term space set up, the next step is to calculate

the vectors for each item. We do this in default.cfm (see
Listing 1) by calling the buildItemVectors public method in
vector.cfc:

arItemVectors = objVector.buildItemVectors(arItems=arItems,
arTermSpace=arTermSpace, intTitleWeightFactor=3);

This method loops through the content array and performs
the following steps for each item:
1. A concatenated string containing the title and body is sent

to the getUniqueKeywords method, which this time returns
a list of the keyword frequencies. A title weighting factor (in
this case, intTitleWeightFactor=3) is introduced by repeating
the title string multiple times in the concatenated string.

2. Armed with the list of keyword frequencies
(arItemKeywords), the item vector is built by looping
through each keyword in the term space and recording the
number of times that the keyword appears in the item.
Term space keywords that do not appear in the item have a
zero value recorded in their vector. Each item vector is
stored in arItemVectors[x].arVector, with the corresponding
item ID in arItemVectors[x].intItemID.

weeb

gblog

2)2(1,2(1

Figure 1: The vector representing the first article

vector space

weeb

gblogblog

2)2(1,2(1

)(2,1(2,

Figure 2: The angle formed between the vectors representing the
two articles is the measure of their similarity.

ColdFusionJournal.com 45AUGUST 2004 CFDJ

It is worth noting at this point that this will probably not be
the optimum way to store the term space and vectors. If your
application stores content in a database, you can build/incre-
ment the term space and item vectors when a new item is added
and store them in the database.

Step 4: Return List of Item-Relevance Matches
With the term space and item vectors calculated, the prepara-

tion work is over with. We can now get on with calculating some
cosine measures and returning relevance rankings.

In default.cfm (see Listing 1), we build an arguments collec-
tion to send to the getItemMatches public method (see Listing
2). The arguments collection consists of the vector of the current
item being viewed (arCurrentItemVector), the vectors of the
other items in the content collection (arItemVectors), the maxi-
mum number of matches to be returned (iMaxRows), and a
lower-bound value for relevance (iThreshold). The example is set
to return all example items – you will need to tweak the argu-
ments based on your own content. A large value for iThreshold
will return fewer, but more relevant, matches.

The getItemMatches method (see Listing 2) loops through the
other item vectors and calculates the cosine measure of each
one compared with the current item by calling the
calculateCosineMeasure private method. If a cosine measure
value is greater than or equal to the lower-bound value, it is
added to a result array (arItemMatches). Once the full array is
built, it is sorted using the arrayOfStructsSort UDF by Nathan
Dintenfass, available from cflib.org at
www.cflib.org/udf.cfm?ID=359. The array is then truncated to
contain iMaxRows items.

Step 5: Displaying the Results
The template outputs the title and body of the current item

and a list of item matches (by looping through arItemMatches).
The match titles are looked up from the main arItems content
array, the cosine measure is recorded, and links allow the user to
reload the default.cfm page to focus on a different item.

Conclusion and Further Development
So there we have it – a vector space engine that provides

“related items” functionality without the need for additional edi-
torial overhead or collaborative filtering based on complicated
user interaction.

These techniques are only the first steps into latent semantic
indexing. Further processing would apply some factors to the
item vectors to reduce the effect of terms that appear in a large
number of items and normalize item lengths. The “semantic”
part of the technique comes when the entire model is put
through a singular value decomposition algorithm (see
http://mathworld.wolfram.com/SingularValueDecomposition.ht
ml). This reduces the number of axes in the term space and com-
presses adjacent vectors together. In effect, keywords are super-
imposed, meaning that semantically similar words such as “car”
and “automobile” become mathematically identical, making
search results much more useful. A good introduction to the
world of LSI can be found at: http://javelina.cet.middlebury.
edu/lsa/out/cover_page.htm.

About the Author
Matt Perdeaux is technical architect at Headshift, an Internet con-
sulting firm specializing in online social interaction. Matt has
been designing and developing ColdFusion-based applications for
five years in both corporate and agency environments. Matt’s Web
applications have received a number of awards, including 2003
CRM Industry Innovation of the Year and the 2003 Platinum
Internet Marketing Attorney award.

matt@perdeaux.co.uk

FREE*CD! $198.00
VALUE!()

— The Complete Works —
CD is edited by CFDJ Editor-in-Chief Robert Diamond and organized

into 23 chapters containing more than 450 exclusive CFDJ articles!

All in an easy-to-navigate HTML format! BONUS: Full source code included!

ORDER AT WWW.SYS-CON.COM/FREECD
*PLUS $9.95 SHIPPING AND PROCESSING (U.S. ONLY)

Secrets of the ColdFusion Masters
Every CFDJArticle on One CD!

Only from the World’s Leading i-Technology Publisher

©COPYRIGHT 2004 SYS-CON MEDIA. WHILE SUPPLIES LAST. OFFER SUBJECT TO CHANGE WITHOUT
NOTICE. ALL BRAND AND PRODUCT NAMES ARE TRADE NAMES, SERVICE MARKS OR TRADEMARKS

OF THEIR RESPECTIVE COMPANIES.

“The vectors of items that
share multiple keywords will

be close together in the
vector space, whereas items
that share few keywords will

be farther apart”

ColdFusionJournal.comCFDJ AUGUST 200446

Listing 1

<cfparam name="intItemID" default="1"> <!--- Default item ID to
display if no URL variable present --->

<cfscript>
objVector = CreateObject("component", "vector");

// STEP 1 - Set up a holding array containing test items
arItems = ArrayNew(1);
arItems[1] = StructNew();
arItems[1].intItemID = 1;
arItems[1].vcTitle = "Blair defends his Iraq strategy";
arItems[1].txtBody = "Tony Blair told MPs he accepted full
responsibility for mistakes highlighted by the Butler Report,
which he described as made 'in good faith'. ...";

arItems[2] = StructNew();
arItems[2].intItemID = 2;
arItems[2].vcTitle = "MoD denies iPod ban";
arItems[2].txtBody = "The Ministry of Defence (MoD) has denied

Reuters reports claiming it has banned high-capacity personal storage
devices, such as iPods. ...";

arItems[3] = StructNew();
arItems[3].intItemID = 3;
arItems[3].vcTitle = "Blair accepts Butler report findings";
arItems[3].txtBody = "TONY Blair today welcomed the Butler report
findings, saying it showed the government and intelligence services
acted in 'good faith'. ...";

arItems[4] = StructNew();
arItems[4].intItemID = 4;
arItems[4].vcTitle = "UK military denies ban on iPod";
arItems[4].txtBody = "The Ministry of Defence has denied reports that
it has banned Apple's iPod due to fears it could be used to steal
sensitive files. ...";

arItems[5] = StructNew();
arItems[5].intItemID = 5;
arItems[5].vcTitle = "Butler 'A by-Election Boost for Blair'";
arItems[5].txtBody = "Lord Butlerís report into the intelligence on
Iraq could help Tony Blair in tomorrowís by-elections, a political
expert said today. ... ";

// STEP 2 - Set up term space (find unique keywords in all items)
arTermSpace = objVector.prepareTermSpace(arItems=arItems);

// STEP 3 - Build Vector for each item
arItemVectors = objVector.buildItemVectors(arItems=arItems,
arTermSpace=arTermSpace, intTitleWeightFactor=3);

// STEP 4 - Find item matches for current item being viewed
args = StructNew();
args.arCurrentItemVector = arItemVectors[intItemID].arVector;
arItemVectorsWithoutCurrent = arItemVectors;
temp = ArrayDeleteAt(arItemVectorsWithoutCurrent, intItemID);
args.arItemVectors = arItemVectorsWithoutCurrent;
args.iMaxRows = 5;
args.iThreshold = 0;

arMatches = objVector.getItemMatches(argumentCollection=args);
</cfscript>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head><title>Vector Space Example</title></head>
<body>
<!--- STEP 5 - Display the results --->
<cfoutput>
<h1>#arItems[intItemID].vcTitle#</h1>
<p>#arItems[intItemID].txtBody#</p>

<cfloop index="cLoop" from="1" to="#ArrayLen(arMatches)#">

#arItems

[arMatches[cLoop].intItemID].vcTitle#
(#arMatches[cLoop].intCosineMeasure#% match)

</cfloop>

</cfoutput>
</body>
</html>

Listing 2

<cfcomponent hint="Vector Space routines Component" displayname="vector">
<!--- Include arrayOfStructsSort UDF by Nathan Dintenfass, available

at http://www.cflib.org/udf.cfm?ID=359 --->
<cfinclude template="arrayOfStructsSort.udf" />

<!--- PRIVATE METHODS --->
<cffunction name="removePunctuation" access="private" returnType=
"string" output="false" hint="Remove punctuation and HTML from
input string">

<cfargument name="sString" type="string" required="true" />
<cfset var sWords = "" />
<cfscript>

sWords = REReplaceNoCase(arguments.sString,
"<(.|\n)+?>"," ","ALL");

sWords = REReplace(sWords, "&(.+?);", " ", "ALL");
sWords = REReplace(sWords, "[[:punct:]]", " ", "ALL");
sWords = REReplace(sWords, "[[:cntrl:]]", " ", "ALL");
sWords = Replace(sWords,"£","","ALL");
sWords = REReplace(Trim(sWords), "\s{1,}", " ", "ALL");

</cfscript>
<cfreturn sWords />

</cffunction>

<cffunction name="removeStopWords" access="private"
returnType="string" output="false" hint="Removes stop words from input

string">
<cfargument name="sString" type="string" required="true" />
<cfset var arStopWords =

ListToArray("$,0,1,2,3,4,5,6,7,8,9,a,able,about,after,again,all,almost,alr
eady,also,although,am,an,and,another,any,are,are,around,as,at,b,based,be,b
ecause,been,before,being,between,both,bring,but,by,c,came,can,com,come,com

vector space

ColdFusionJournal.comCFDJ AUGUST 200448

es,could,d,did,do,does,doing,done,e,each,eight,else,etc,even,every,f,fiv
e,for,four,from,g,get,gets,getting,go,going,got,h,had,has,have,he,he,her
,here,him,himself,his,how,however,href,http,i,if,in,including,into,is,it
,it,its,j,just,k,kb,know,l,like,looks,m,mailto,make,making,many,may,mb,m
e,means,might,more,more,most,move,mr,much,must,my,n,need,needs,never,nic
e,nine,no,not,now,o,of,often,oh,ok,on,on,one,only,or,org,other,our,out,o
ver,own,p,piece,q,r,rather,re,really,s,said,same,say,says,see,seven,sev-
eral,she,should,since,single,six,so,so,some,something,still,stuff,such,t
,take,ten,than,that,the,their,them,them,then,there,there,these,they,they
,thing,things,this,those,three,through,to,too,took,two,u,under,up,us,use
,used,using,usual,v,ve,very,via,w,want,was,way,we,we,well,were,what,when
,where,whether,which,while,whilst,who,why,will,with,within,would,x,y,yes
,yet,you,your,z") />

<cfset var cStopWord = 0 />
<cfset var sWords = arguments.sString />
<cfscript>

for (cStopWord=1; cStopWord LTE ArrayLen
(arStopWords); cStopWord = cStopWord + 1) {

sWords = ReplaceNoCase(sWords, " " &
arStopWords[cStopWord] & " ", " ", "ALL");

}
</cfscript>
<cfreturn sWords />

</cffunction>

<cffunction name="getUniqueKeywords" access="private"
returntype="Array" output="False" hint="Returns a list of unique

keywords in a string.">
<cfargument name="txtContent" type="string" required="true" />
<cfargument name="bRecordFrequency" type="boolean"

required="false" default=false />
<cfset var lstKeyWords = "" />
<cfset var arKeyWords = ArrayNew(1) />
<cfset var arKeyWordsOutput = ArrayNew(1) />
<cfset var sPrev = "" />
<cfset var cWord = 0 />
<cfset var temp = "" />
<cfscript>

// Remove punctuation & HTML
lstKeyWords = removePunctuation(" " &

arguments.txtContent & " ");

// Remove stop words
lstKeyWords = removeStopWords(lstKeyWords);

// Convert string to list of single words
lstKeyWords = REReplace(Trim(lstKeyWords),

"\s{1,}", ",", "ALL");

// Convert list to array and sort into
alphabetical order

arKeywords = ListToArray(lstKeywords);
temp = ArraySort(arKeywords, "textnocase");

// Run through words list, removing duplicates and
recording the frequency if applicable

sPrev = "";
for (cWord=1; cWord LTE ArrayLen(arKeywords);

cWord = cWord + 1) {
if ((Not IsNumeric(arKeywords[cWord]))
AND (arKeywords[cWord] NEQ sPrev)) {
if (arguments.bRecordFrequency) {
arKeyWordsOutput[ArrayLen
(arKeyWordsOutput)+1] = StructNew();
arKeyWordsOutput[ArrayLen
(arKeyWordsOutput)].vcKeyWord
= arKeywords[cWord];

arKeyWordsOutput[ArrayLen
(arKeyWordsOutput)].intFrequency = ListValue
CountNoCase(lstKeywords, arKeywords[cWord]);

} else {
arKeyWordsOutput[ArrayLen(arKeyWordsOutput)+1] =
arKeywords[cWord];

}
sPrev = arKeywords[cWord];

}
}

</cfscript>
<cfreturn arKeyWordsOutput />

</cffunction>

<cffunction name="calculateCosineMeasure" access="private"
returntype="numeric" output="False" hint="Returns cosine measure
(0 to 100) for two supplied vectors">

<cfargument name="arVector1" type="array" required="true" />
<cfargument name="arVector2" type="array" required="true" />
<cfset var cAxis = 0 />
<cfset var iNumerator = 0 />
<cfset var iSumSquares1 = 0 />
<cfset var iSumSquares2 = 0 />
<cfset var iCosineMeasure = 0 />
<cfscript>

// loop through each axis and keep running totals
for (cAxis=1; cAxis LTE ArrayLen(arguments.arVector1);
cAxis=cAxis+1) {

iNumerator = iNumerator + (arVector1[cAxis]*arVector2
[cAxis]);

iSumSquares1 = iSumSquares1 + arVector1[cAxis]^2;
iSumSquares2 = iSumSquares2 + arVector2[cAxis]^2;

}
iCosineMeasure =

Round(100*(iNumerator/(sqr(iSumSquares1)*sqr(iSumSquares2))));
</cfscript>
<cfreturn iCosineMeasure />

</cffunction>

<!--- PUBLIC METHODS --->
<cffunction name="prepareTermSpace" access="public" returntype=
"Array" output="False" hint="Takes items from array and returns

the term space.">
<cfargument name="arItems" type="array" required="true" />
<cfset var txtContent = "" />
<cfset var cItem = 0 />
<cfset var arTermSpace = ArrayNew(1) />
<cfscript>

vector space

ColdFusionJournal.com 49AUGUST 2004 CFDJ

Subscribe
Today!

Subscribe
Today!

Subscribe
Today!

SAVE 16% OFF

• Exclusive feature articles
• Latest CFDJ product reviews
• Interviews with the hottest names in ColdFusion
• Code examples you can use in your applications
• CFDJ tips and techniques

That’s a savings of $1789 off the annual newsstand rate. Visit our site at
www.sys-con.com/coldfusion/ or call 1-800-303-5282 and subscribe today!

Subscribe
Today!

SAVE 16% OFF
OFFER SUBJECT TO CHANGE WITHOUT NOTICE

$89 9912 Issues for

2004 RCAs WWW.SYS-CON.COM 888-303-5282 39

ACTIVEPDF WWW.ACTIVEPDF.COM 4

CFDYNAMICS WWW.CFDYNAMICS.COM 866-233-9626 11

CFDJ WWW.SYS-CON.COM/COLDFUSION/ 888-303-5282 49

COLDFUSION RESOURCE CD WWW.SYS-CON.COM/FREECD 888-303-5282 45

FUSEBOX 2004 WWW.CFCONF.ORG/FUSEBOX2004/ 301-424-3903 25

FUSETALK WWW.FUSETALK.COM 866-477-7542 29

HAL HELMS, INC WWW.HALHELMS.COM 31

HOSTMYSITE.COM WWW.HOSTMYSITE.COM/CFDJ 877-248-4678 27

IS+S WWW.ISSJOURNAL.COM 888-303-5282 43

INTERAKT ONLINE WWW.INTERAKTONLINE.COM 15

INTERMEDIA.NET WWW.INTERMEDIA.NET 800-379-7729 COVER IV

IT SOLUTIONS GUIDE WWW.SYS-CON.COM/IT 201-802-3021 47

JAVA RESOURCE CD WWW.SYS-CON.COM/FREECD 888-303-5282 19

MACROMEDIA WWW.MACROMEDIA.COM/GO/DWUPDATED COVER II & PAGE 3

MACROMEDIA MAX WWW.MACROMEDIA.COM/GO/MAX 17

MX DEVELOPER'S JOURNAL WWW.SYS-CON.COM/MX/SUBSCRIPTION.CFM 888-303-5282 47

PAPERTHIN WWW.PAPERTHIN.COM 800-940-3087 6

SEAPINE WWW.SEAPINE.COM 888-683-6456 23

SYS-CON REPRINTS KRISTIN@SYS-CON.COM 201-802-3026 33

WEB SERVICES EDGE EAST WWW.SYS-CON.COM/EDGE 201-802-3045 35

WEBCORE TECH WWW.WEBCORETECH.COM 877-WCT-HOST COVER III

ADVERTISER URL PHONE PAGE

CFDJ Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are set to protect the high editorial quality of. All
advertising is subject to approval by the Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher fails to
publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of the cost of the advertisement as a result of a mistake in
the advertisement or for any other reason. The Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agencies
who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to change by the Publisher without notice. No conditions
other than those set forth in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in ColdFusion Developer’s Journal. Advertisements are to be printed at the discretion of the Publisher. This discretion
includes the positioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and changes to advertisements must be
made in writing before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.This index is provided as an
additional service to our readers. The publisher does not assume any liability for errors or omissions This index is provided as an additional service to our
readers. the publisher does not assume any liability for errors or omissions.

Don’t Miss
CFDJ ’s

Next
Issue!
ColdFusion Security Best Practices: A thorough
overview of ColdFusion security coding practices.

Java Wrapper for GNU Privacy Guard: A look at GnuPG
, an open source replacement of PGP.

Top Ten Web Security Tips: A few simple steps can make
your site much more secure.

Using ColdFusion for Network Monitoring: ColdFusion
can now access a wide array of network information via SNMP.

ColdFusionJournal.comCFDJ AUGUST 200450

cfmlvector space

// Add content of title and body field to holding string
for each item in content array

for (cItem=1; cItem LTE
ArrayLen(arguments.arItems); cItem=cItem+1) {

txtContent = txtContent &
arguments.arItems[cItem].vcTitle & " " &
arguments.arItems[cItem].txtBody & " ";

}
// Get list of unique keywords
arTermSpace =

getUniqueKeywords(txtContent=txtContent, bRecordFrequency=false);
</cfscript>
<cfreturn arTermSpace />

</cffunction>

<cffunction name="buildItemVectors" access="public"
returntype="Array" output="False" hint="Builds vectors for each
item in provided term space.">
<cfargument name="arItems" type="array" required="true" />
<cfargument name="arTermSpace" type="array" required="true" />
<cfargument name="intTitleWeightFactor" type="numeric"

required="false" default=1 />
<cfset var arItemVectors = ArrayNew(1) />
<cfset var cItem = 0 />
<cfset var cTerm = 0 />
<cfset var cItemTerm = 0 />
<cfset var txtContent = "" />
<cfset var temp = "" />
<cfset var arItemKeywords = ArrayNew(1) />
<cfscript>

for (cItem=1; cItem LTE ArrayLen(arguments.arItems);
cItem=cItem+1) {
arItemVectors[ArrayLen(arItemVectors)+1] = StructNew();
arItemVectors[ArrayLen(arItemVectors)].intItemID =
arguments.arItems[cItem].intItemID;

// Get unique keywords and frequencies in item content
txtContent = RepeatString(arguments.arItems[cItem].vcTitle & "
", arguments.intTitleWeightFactor) & " " &
arguments.arItems[cItem].txtBody & " ";
arItemKeywords = ArrayNew(1);
arItemKeywords = getUniqueKeywords(txtContent=txtContent,
bRecordFrequency=true);

// Set up empty array to hold distance along each axis in the
term space

arItemVectors[ArrayLen(arItemVectors)].arVector = ArrayNew(1);

// Loop through vector array and record frequency of keyword
in item vector

cItemTerm = 1;
for (cTerm=1; cTerm LTE ArrayLen(arguments.arTermSpace);
cTerm=cTerm+1) {
if ((cItemTerm LTE ArrayLen(arItemKeywords)) AND
(arguments.arTermSpace[cTerm] EQ arItemKeywords
[cItemTerm].vcKeyWord)) {
arItemVectors[ArrayLen(arItemVectors)].arVector[cTerm] =
arItemKeywords[cItemTerm].intFrequency;

cItemTerm = cItemTerm + 1;

} else {
arItemVectors[ArrayLen(arItemVectors)].arVector
[cTerm] = 0;

}
}

}
</cfscript>
<cfreturn arItemVectors />

</cffunction>

<cffunction name="getItemMatches" access="public" returntype="array"
output="False" hint="Return list of item matches">
<cfargument name="arCurrentItemVector" type="array" required="true"
hint="Current item vector"/>

<cfargument name="arItemVectors" type="array" required="true"
hint="Full set of item vectors"/>

<cfargument name="iMaxRows" type="numeric" required="false"
default="10" />

<cfargument name="iThreshold" type="numeric" required="false"
default="10" />

<cfset var arItemMatches = ArrayNew(1) />
<cfset var cItem = 0 />
<cfset var intHoldingCosMeasure = 0 />
<cfscript>

// Calculate cosine measure for each item array and record if
greater than provided threshold value

for (cItem=1; cItem LTE ArrayLen(arguments.arItemVectors);
cItem=cItem+1) {
intHoldingCosMeasure = calculateCosineMeasure(arVector1=
arguments.arCurrentItemVector, arVector2=arItemVectors
[cItem].arVector);
if (intHoldingCosMeasure GTE arguments.iThreshold) {

arItemMatches[ArrayLen(arItemMatches)+1] = StructNew();
arItemMatches[ArrayLen(arItemMatches)].intItemID =
arItemVectors[cItem].intItemID;

arItemMatches[ArrayLen(arItemMatches)].intCosineMeasure =
intHoldingCosMeasure;

}
}

// Sort array by cosine measure
arItemMatches = arrayOfStructsSort(arItemMatches,

"intCosineMeasure", "desc", "numeric");

// Trunctate array if longer than maximum number of rows
if (ArrayLen(arItemMatches) GT arguments.iMaxRows) {

for (cItem=ArrayLen(arItemMatches); cItem GT
arguments.iMaxRows; cItem=cItem-1) {
temp = ArrayDeleteAt(arItemMatches, cItem);

}
}

</cfscript>
<cfreturn arItemMatches />

</cffunction>
</cfcomponent>

Download the Code...
Go to www.coldfusionjournal.com

ColdFusionJournal.comCFDJ AUGUST 200452

Managing technology that runs your business is a matter of
trust and control. INTERMEDIA.NET gives you both.

TRUST. Since 1995 we have been providing outstanding
hosting service and technology to our clients. Don’t take our
word for it... take theirs.

“The support and service that you offer are nothing short of
golden. The high quality of your system and service for CF
customers is something one could only ever dream of.” –
Claude Raiola, Director, AustralianAccommodation.com Pty. Ltd.

CONTROL. We give you instant control over your site,
server and account configuration changes. No more
submitting requests and waiting for someone else to take
action. You are in control to pilot your business through
its daily needs.

BE THE PILOT. Take a free test flight and see what our
HostPilot™ Control Panel offers you beyond all others.
Check out our SLA guarantees. To see more testimonials
and to find out about our competitive advantages, visit
our Web site at www.Intermedia.NET.

WE DARE YOU TO TAKE A FREE TEST FLIGHT!

©
 C

op
yr

ig
ht

 I
N

TE
RM

ED
IA

.N
ET

, I
nc

 2
00

2.
 A

ll
rig

ht
s

re
se

rv
ed

. A
ll

ot
he

r t
ra

de
m

ar
ks

 a
re

 p
ro

pe
rty

 o
f t

he
ir

re
sp

ec
tiv

e
ho

ld
er

s.

Managed Hosting • Shared Hosting • Microsoft Exchange Hosting

Call us at: 1.800.379.7729 • Visit us at: WWW.INTERMEDIA.NET

be the
pilot!

FREE SETUP on Shared
Hosting Accounts With
ColdFusion MX Support

Use Promo Code CFDJ2004

